001     845880
005     20220930130148.0
024 7 _ |a 10.2136/vzj2017.09.0168
|2 doi
024 7 _ |a 2128/18641
|2 Handle
024 7 _ |a WOS:000437536200001
|2 WOS
037 _ _ |a FZJ-2018-03079
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Groh, Jannis
|0 P:(DE-Juel1)158034
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data
260 _ _ |a Madison, Wis.
|c 2018
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530863626_8783
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water isotope ( d 18O) measurements in weighable lysimeter systems. We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., d 18O) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non-measured water flow variables. When a bromide (Br−) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br− sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br− concentrations were well predicted, which validated the dispersivity parameterization.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
700 1 _ |a Stumpp, Christine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lücke, Andreas
|0 P:(DE-Juel1)129567
|b 2
|u fzj
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 3
|u fzj
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 4
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
|u fzj
770 _ _ |a Stable Isotope Approaches in Vadose Zone Research
773 _ _ |a 10.2136/vzj2017.09.0168
|0 PERI:(DE-600)2088189-7
|n 1
|p 1 -19
|t Vadose zone journal
|v 17
|y 2018
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/845880/files/vzj-17-1-170168.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845880/files/vzj-17-1-170168.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845880/files/vzj-17-1-170168.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845880/files/vzj-17-1-170168.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845880/files/vzj-17-1-170168.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845880/files/vzj-17-1-170168.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:845880
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21