000845897 001__ 845897
000845897 005__ 20210129233725.0
000845897 0247_ $$2doi$$a10.1093/cercor/bhy049
000845897 0247_ $$2ISSN$$a1047-3211
000845897 0247_ $$2ISSN$$a1460-2199
000845897 0247_ $$2Handle$$a2128/21857
000845897 0247_ $$2altmetric$$aaltmetric:38056256
000845897 0247_ $$2pmid$$apmid:29912435
000845897 0247_ $$2WOS$$aWOS:000482180900011
000845897 037__ $$aFZJ-2018-03096
000845897 082__ $$a610
000845897 1001_ $$00000-0002-8084-1330$$aHartwigsen, Gesa$$b0$$eCorresponding author
000845897 245__ $$aFunctional Segregation of the Right Inferior Frontal Gyrus: Evidence From Coactivation-Based Parcellation
000845897 260__ $$aOxford$$bOxford Univ. Press$$c2019
000845897 3367_ $$2DRIVER$$aarticle
000845897 3367_ $$2DataCite$$aOutput Types/Journal article
000845897 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552656125_21951
000845897 3367_ $$2BibTeX$$aARTICLE
000845897 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845897 3367_ $$00$$2EndNote$$aJournal Article
000845897 520__ $$aPrevious studies helped unraveling the functional architecture of the human cerebral cortex. However, a comprehensive functional segregation of right lateral prefrontal cortex is missing. Here, we delineated cortical clusters in right area 44 and 45 based on their task-constrained whole-brain activation patterns across neuroimaging experiments obtained from a large database. We identified 5 clusters that differed with respect to their coactivation patterns, which were consistent with resting-state functional connectivity patterns of an independent dataset. Two clusters in the posterior inferior frontal gyrus (IFG) were functionally associated with action inhibition and execution, while two anterior clusters were related to reasoning and social cognitive processes. A fifth cluster was associated with spatial attention. Strikingly, the functional organization of the right IFG can thus be characterized by a posterior-to-anterior axis with action-related functions on the posterior and cognition-related functions on the anterior end. We observed further subdivisions along a dorsal-to-ventral axis in posterior IFG between action execution and inhibition, and in anterior IFG between reasoning and social cognition. The different clusters were integrated in distinct large-scale networks for various cognitive processes. These results provide evidence for a general organization of cognitive processes along axes spanning from more automatic to more complex cognitive processes.
000845897 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000845897 588__ $$aDataset connected to CrossRef
000845897 7001_ $$0P:(DE-HGF)0$$aNeef, Nicole E$$b1
000845897 7001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b2$$ufzj
000845897 7001_ $$0P:(DE-HGF)0$$aMargulies, Daniel S$$b3
000845897 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b4$$ufzj
000845897 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhy049$$n4$$p1532-1546$$tCerebral cortex$$v29$$x1460-2199$$y2019
000845897 8564_ $$uhttps://juser.fz-juelich.de/record/845897/files/bhy049.pdf$$yOpenAccess
000845897 8564_ $$uhttps://juser.fz-juelich.de/record/845897/files/bhy049.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845897 909CO $$ooai:juser.fz-juelich.de:845897$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000845897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b2$$kFZJ
000845897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
000845897 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000845897 9141_ $$y2019
000845897 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845897 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000845897 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2015
000845897 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845897 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845897 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845897 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845897 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000845897 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2015
000845897 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845897 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845897 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845897 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845897 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845897 920__ $$lyes
000845897 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000845897 980__ $$ajournal
000845897 980__ $$aVDB
000845897 980__ $$aUNRESTRICTED
000845897 980__ $$aI:(DE-Juel1)INM-7-20090406
000845897 9801_ $$aFullTexts