Home > Publications database > Functional Segregation of the Right Inferior Frontal Gyrus: Evidence From Coactivation-Based Parcellation > print |
001 | 845897 | ||
005 | 20210129233725.0 | ||
024 | 7 | _ | |a 10.1093/cercor/bhy049 |2 doi |
024 | 7 | _ | |a 1047-3211 |2 ISSN |
024 | 7 | _ | |a 1460-2199 |2 ISSN |
024 | 7 | _ | |a 2128/21857 |2 Handle |
024 | 7 | _ | |a altmetric:38056256 |2 altmetric |
024 | 7 | _ | |a pmid:29912435 |2 pmid |
024 | 7 | _ | |a WOS:000482180900011 |2 WOS |
037 | _ | _ | |a FZJ-2018-03096 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Hartwigsen, Gesa |0 0000-0002-8084-1330 |b 0 |e Corresponding author |
245 | _ | _ | |a Functional Segregation of the Right Inferior Frontal Gyrus: Evidence From Coactivation-Based Parcellation |
260 | _ | _ | |a Oxford |c 2019 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1552656125_21951 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Previous studies helped unraveling the functional architecture of the human cerebral cortex. However, a comprehensive functional segregation of right lateral prefrontal cortex is missing. Here, we delineated cortical clusters in right area 44 and 45 based on their task-constrained whole-brain activation patterns across neuroimaging experiments obtained from a large database. We identified 5 clusters that differed with respect to their coactivation patterns, which were consistent with resting-state functional connectivity patterns of an independent dataset. Two clusters in the posterior inferior frontal gyrus (IFG) were functionally associated with action inhibition and execution, while two anterior clusters were related to reasoning and social cognitive processes. A fifth cluster was associated with spatial attention. Strikingly, the functional organization of the right IFG can thus be characterized by a posterior-to-anterior axis with action-related functions on the posterior and cognition-related functions on the anterior end. We observed further subdivisions along a dorsal-to-ventral axis in posterior IFG between action execution and inhibition, and in anterior IFG between reasoning and social cognition. The different clusters were integrated in distinct large-scale networks for various cognitive processes. These results provide evidence for a general organization of cognitive processes along axes spanning from more automatic to more complex cognitive processes. |
536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Neef, Nicole E |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Camilleri, Julia |0 P:(DE-Juel1)172024 |b 2 |u fzj |
700 | 1 | _ | |a Margulies, Daniel S |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Eickhoff, Simon |0 P:(DE-Juel1)131678 |b 4 |u fzj |
773 | _ | _ | |a 10.1093/cercor/bhy049 |0 PERI:(DE-600)1483485-6 |n 4 |p 1532-1546 |t Cerebral cortex |v 29 |y 2019 |x 1460-2199 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/845897/files/bhy049.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/845897/files/bhy049.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:845897 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172024 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131678 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CEREB CORTEX : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CEREB CORTEX : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|