000845900 001__ 845900
000845900 005__ 20210129233726.0
000845900 0247_ $$2doi$$a10.1093/aob/mcx221
000845900 0247_ $$2ISSN$$a0003-4754
000845900 0247_ $$2ISSN$$a0305-7364
000845900 0247_ $$2ISSN$$a1095-8290
000845900 0247_ $$2pmid$$apmid:29432520
000845900 0247_ $$2WOS$$aWOS:000430676600019
000845900 0247_ $$2altmetric$$aaltmetric:32818250
000845900 037__ $$aFZJ-2018-03098
000845900 082__ $$a580
000845900 1001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b0$$eCorresponding author$$ufzj
000845900 245__ $$aCRootBox: a structural–functional modelling framework for root systems
000845900 260__ $$aOxford$$bOxford University Press$$c2018
000845900 3367_ $$2DRIVER$$aarticle
000845900 3367_ $$2DataCite$$aOutput Types/Journal article
000845900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527056293_20926
000845900 3367_ $$2BibTeX$$aARTICLE
000845900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845900 3367_ $$00$$2EndNote$$aJournal Article
000845900 520__ $$aBackground and AimsRoot architecture development determines the sites in soil where roots provide input of carbon and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architecture models have been widely used and been further developed into functional–structural models that simulate the fate of water and solutes in the soil–root system. The root architecture model CRootBox presented here is a flexible framework to model root architecture and its interactions with static and dynamic soil environments.MethodsCRootBox is a C++-based root architecture model with Python binding, so that CRootBox can be included via a shared library into any Python code. Output formats include VTP, DGF, RSML and a plain text file containing coordinates of root nodes. Furthermore, a database of published root architecture parameters was created. The capabilities of CRootBox for the unconfined growth of single root systems, as well as the different parameter sets, are highlighted in a freely available web application.Key resultsThe capabilities of CRootBox are demonstrated through five different cases: (1) free growth of individual root systems; (2) growth of root systems in containers as a way to mimic experimental setups; (3) field-scale simulation; (4) root growth as affected by heterogeneous, static soil conditions; and (5) coupling CRootBox with code from the book Soil physics with Python to dynamically compute water flow in soil, root water uptake and water flow inside roots.ConclusionsCRootBox is a fast and flexible functional–structural root model that is based on state-of-the-art computational science methods. Its aim is to facilitate modelling of root responses to environmental conditions as well as the impact of roots on soil. In the future, this approach will be extended to the above-ground part of the plant.
000845900 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000845900 588__ $$aDataset connected to CrossRef
000845900 7001_ $$0P:(DE-HGF)0$$aLeitner, Daniel$$b1
000845900 7001_ $$0P:(DE-Juel1)165987$$aLandl, Magdalena$$b2$$ufzj
000845900 7001_ $$0P:(DE-Juel1)171180$$aLobet, Guillaume$$b3$$ufzj
000845900 7001_ $$0P:(DE-Juel1)168562$$aMai, Trung Hieu$$b4$$ufzj
000845900 7001_ $$0P:(DE-HGF)0$$aMorandage, Shehan$$b5
000845900 7001_ $$0P:(DE-Juel1)168171$$aSheng, Cheng$$b6$$ufzj
000845900 7001_ $$0P:(DE-HGF)0$$aZörner, Mirjam$$b7
000845900 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b8$$ufzj
000845900 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b9$$ufzj
000845900 773__ $$0PERI:(DE-600)1461328-1$$a10.1093/aob/mcx221$$gVol. 121, no. 5, p. 1033 - 1053$$n5$$p1033 - 1053$$tAnnals of botany$$v121$$x1095-8290$$y2018
000845900 8564_ $$uhttps://juser.fz-juelich.de/record/845900/files/mcx221.pdf$$yRestricted
000845900 8564_ $$uhttps://juser.fz-juelich.de/record/845900/files/mcx221.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845900 8564_ $$uhttps://juser.fz-juelich.de/record/845900/files/mcx221.gif?subformat=icon$$xicon$$yRestricted
000845900 8564_ $$uhttps://juser.fz-juelich.de/record/845900/files/mcx221.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845900 8564_ $$uhttps://juser.fz-juelich.de/record/845900/files/mcx221.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845900 8564_ $$uhttps://juser.fz-juelich.de/record/845900/files/mcx221.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845900 909CO $$ooai:juser.fz-juelich.de:845900$$pVDB:Earth_Environment$$pVDB
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b0$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165987$$aForschungszentrum Jülich$$b2$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171180$$aForschungszentrum Jülich$$b3$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168562$$aForschungszentrum Jülich$$b4$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168171$$aForschungszentrum Jülich$$b6$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b8$$kFZJ
000845900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b9$$kFZJ
000845900 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000845900 9141_ $$y2018
000845900 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000845900 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845900 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000845900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845900 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN BOT-LONDON : 2015
000845900 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845900 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845900 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845900 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845900 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000845900 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845900 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845900 920__ $$lyes
000845900 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000845900 980__ $$ajournal
000845900 980__ $$aVDB
000845900 980__ $$aI:(DE-Juel1)IBG-3-20101118
000845900 980__ $$aUNRESTRICTED