001     845900
005     20210129233726.0
024 7 _ |a 10.1093/aob/mcx221
|2 doi
024 7 _ |a 0003-4754
|2 ISSN
024 7 _ |a 0305-7364
|2 ISSN
024 7 _ |a 1095-8290
|2 ISSN
024 7 _ |a pmid:29432520
|2 pmid
024 7 _ |a WOS:000430676600019
|2 WOS
024 7 _ |a altmetric:32818250
|2 altmetric
037 _ _ |a FZJ-2018-03098
082 _ _ |a 580
100 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 0
|e Corresponding author
|u fzj
245 _ _ |a CRootBox: a structural–functional modelling framework for root systems
260 _ _ |a Oxford
|c 2018
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1527056293_20926
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background and AimsRoot architecture development determines the sites in soil where roots provide input of carbon and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architecture models have been widely used and been further developed into functional–structural models that simulate the fate of water and solutes in the soil–root system. The root architecture model CRootBox presented here is a flexible framework to model root architecture and its interactions with static and dynamic soil environments.MethodsCRootBox is a C++-based root architecture model with Python binding, so that CRootBox can be included via a shared library into any Python code. Output formats include VTP, DGF, RSML and a plain text file containing coordinates of root nodes. Furthermore, a database of published root architecture parameters was created. The capabilities of CRootBox for the unconfined growth of single root systems, as well as the different parameter sets, are highlighted in a freely available web application.Key resultsThe capabilities of CRootBox are demonstrated through five different cases: (1) free growth of individual root systems; (2) growth of root systems in containers as a way to mimic experimental setups; (3) field-scale simulation; (4) root growth as affected by heterogeneous, static soil conditions; and (5) coupling CRootBox with code from the book Soil physics with Python to dynamically compute water flow in soil, root water uptake and water flow inside roots.ConclusionsCRootBox is a fast and flexible functional–structural root model that is based on state-of-the-art computational science methods. Its aim is to facilitate modelling of root responses to environmental conditions as well as the impact of roots on soil. In the future, this approach will be extended to the above-ground part of the plant.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Leitner, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Landl, Magdalena
|0 P:(DE-Juel1)165987
|b 2
|u fzj
700 1 _ |a Lobet, Guillaume
|0 P:(DE-Juel1)171180
|b 3
|u fzj
700 1 _ |a Mai, Trung Hieu
|0 P:(DE-Juel1)168562
|b 4
|u fzj
700 1 _ |a Morandage, Shehan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sheng, Cheng
|0 P:(DE-Juel1)168171
|b 6
|u fzj
700 1 _ |a Zörner, Mirjam
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 8
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 9
|u fzj
773 _ _ |a 10.1093/aob/mcx221
|g Vol. 121, no. 5, p. 1033 - 1053
|0 PERI:(DE-600)1461328-1
|n 5
|p 1033 - 1053
|t Annals of botany
|v 121
|y 2018
|x 1095-8290
856 4 _ |u https://juser.fz-juelich.de/record/845900/files/mcx221.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845900/files/mcx221.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845900/files/mcx221.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845900/files/mcx221.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845900/files/mcx221.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845900/files/mcx221.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845900
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165987
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171180
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168171
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN BOT-LONDON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21