000845903 001__ 845903
000845903 005__ 20220930130148.0
000845903 0247_ $$2doi$$a10.5194/hess-22-2449-2018
000845903 0247_ $$2ISSN$$a1027-5606
000845903 0247_ $$2ISSN$$a1607-7938
000845903 0247_ $$2Handle$$a2128/18639
000845903 0247_ $$2WOS$$aWOS:000430728800002
000845903 0247_ $$2altmetric$$aaltmetric:38914247
000845903 037__ $$aFZJ-2018-03101
000845903 082__ $$a550
000845903 1001_ $$0P:(DE-Juel1)156154$$aCai, Gaochao$$b0$$eCorresponding author
000845903 245__ $$aRoot growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
000845903 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000845903 3367_ $$2DRIVER$$aarticle
000845903 3367_ $$2DataCite$$aOutput Types/Journal article
000845903 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530622777_18588
000845903 3367_ $$2BibTeX$$aARTICLE
000845903 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845903 3367_ $$00$$2EndNote$$aJournal Article
000845903 520__ $$aHow much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in root density on RWU could be accounted for directly by the physically based RWU model but not by empirical models that use normalized root density functions.
000845903 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000845903 588__ $$aDataset connected to CrossRef
000845903 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b1
000845903 7001_ $$0P:(DE-HGF)0$$aLangensiepen, Matthias$$b2
000845903 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b3$$ufzj
000845903 7001_ $$0P:(DE-HGF)0$$aHüging, Hubert$$b4
000845903 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000845903 773__ $$0PERI:(DE-600)2100610-6$$a10.5194/hess-22-2449-2018$$gVol. 22, no. 4, p. 2449 - 2470$$n4$$p2449 - 2470$$tHydrology and earth system sciences$$v22$$x1607-7938$$y2018
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/hess-22-2449-2018.pdf$$yOpenAccess
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/hess-22-2449-2018.gif?subformat=icon$$xicon$$yOpenAccess
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/hess-22-2449-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/hess-22-2449-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/hess-22-2449-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/hess-22-2449-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.gif?subformat=icon$$xicon
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-1440$$xicon-1440
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-180$$xicon-180
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-640$$xicon-640
000845903 8564_ $$uhttps://juser.fz-juelich.de/record/845903/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf?subformat=pdfa$$xpdfa
000845903 8767_ $$8Helmholtz-PUC-2018-22$$92018-07-02$$d2018-07-03$$eAPC$$jZahlung erfolgt$$phess-2017-711
000845903 909CO $$ooai:juser.fz-juelich.de:845903$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000845903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b1$$kFZJ
000845903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b3$$kFZJ
000845903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000845903 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000845903 9141_ $$y2018
000845903 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845903 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845903 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHYDROL EARTH SYST SC : 2015
000845903 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000845903 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000845903 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845903 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845903 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845903 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845903 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845903 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845903 920__ $$lyes
000845903 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000845903 9801_ $$aFullTexts
000845903 980__ $$ajournal
000845903 980__ $$aVDB
000845903 980__ $$aI:(DE-Juel1)IBG-3-20101118
000845903 980__ $$aUNRESTRICTED
000845903 980__ $$aAPC