000845907 001__ 845907
000845907 005__ 20220930130149.0
000845907 0247_ $$2doi$$a10.1002/hbm.24213
000845907 0247_ $$2ISSN$$a1065-9471
000845907 0247_ $$2ISSN$$a1097-0193
000845907 0247_ $$2pmid$$apmid:29770530
000845907 0247_ $$2WOS$$aWOS:000441276600025
000845907 0247_ $$2Handle$$a2128/21656
000845907 0247_ $$2altmetric$$aaltmetric:41912406
000845907 037__ $$aFZJ-2018-03105
000845907 082__ $$a610
000845907 1001_ $$00000-0002-4866-272X$$aWu, Jianxiao$$b0
000845907 245__ $$aAccurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems
000845907 260__ $$aNew York, NY$$bWiley-Liss$$c2018
000845907 3367_ $$2DRIVER$$aarticle
000845907 3367_ $$2DataCite$$aOutput Types/Journal article
000845907 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564726388_10925
000845907 3367_ $$2BibTeX$$aARTICLE
000845907 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845907 3367_ $$00$$2EndNote$$aJournal Article
000845907 500__ $$aSingapore MOE Tier 2, Grant/Award Number: MOE2014‐T2‐2‐016; NUS Strategic Research, Grant/Award Number: DPRT/944/09/14; NUS SOM Aspiration Fund, Grant/Award Number: R185000271720; Singapore NMRC, Grant/Award Number: CBRG/0088/2015; NUS YIA; Singapore National Research Foundation (NRF) Fellowship (Class of 2017); Center for Functional Neuroimaging Technologies, Grant/Award Number: P41EB015896; Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, Grant/Award Numbers: 1S10RR023401, 1S10RR019307, 1S10RR023043; National Institute of Mental Health, Grant/Award Number: R01‐MH074457; Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain”; European Union's Horizon 2020 Research and Innovation Programme, Grant/Award Number: 7202070 (HBP SGA1); National Institute for Biomedical Imaging and Bioengineering, Grant/Award Numbers: P41EB015896, 1R01EB023281, R01EB006758, R21EB018907, R01EB019956; National Institute on Aging, Grant/Award Numbers: 5R01AG008122, R01AG016495; National Institute of Diabetes and Digestive and Kidney Diseases, Grant/Award Number: 1‐R21‐DK‐108277‐01; National Institute for Neurological Disorders and Stroke, Grant/Award Numbers: R01NS0525851, R21NS072652, R01NS070963, R01NS083534, 5U01NS086625; NIH Blueprint for Neuroscience Research, Grant/Award Number: 5U01‐MH093765
000845907 520__ $$aThe results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registration fusion) was previously proposed, but not widely adopted. Two implementations of the registration fusion (RF) approach were considered, with one implementation utilizing the Advanced Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to the coordinate system, rather than via another coordinate system. Only in scenarios where the optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsaverage), should the approaches evaluated in this manuscript be considered. In these scenarios, we recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu2017_RegistrationFusion).
000845907 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000845907 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000845907 588__ $$aDataset connected to CrossRef
000845907 7001_ $$0P:(DE-HGF)0$$aNgo, Gia H.$$b1
000845907 7001_ $$0P:(DE-HGF)0$$aGreve, Douglas$$b2
000845907 7001_ $$0P:(DE-HGF)0$$aLi, Jingwei$$b3
000845907 7001_ $$0P:(DE-HGF)0$$aHe, Tong$$b4
000845907 7001_ $$0P:(DE-HGF)0$$aFischl, Bruce$$b5
000845907 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b6
000845907 7001_ $$0P:(DE-HGF)0$$aYeo, B. T. Thomas$$b7$$eCorresponding author
000845907 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.24213$$n9$$p3793-3808$$tHuman brain mapping$$v39$$x1065-9471$$y2018
000845907 8564_ $$uhttps://juser.fz-juelich.de/record/845907/files/AS_1190801201615.pdf
000845907 8564_ $$uhttps://juser.fz-juelich.de/record/845907/files/Preprint_180416.pdf$$yOpenAccess
000845907 8564_ $$uhttps://juser.fz-juelich.de/record/845907/files/Wu_et_al-2018-Human_Brain_Mapping-1.pdf$$yOpenAccess
000845907 8564_ $$uhttps://juser.fz-juelich.de/record/845907/files/AS_1190801201615.pdf?subformat=pdfa$$xpdfa
000845907 8564_ $$uhttps://juser.fz-juelich.de/record/845907/files/Wu_et_al-2018-Human_Brain_Mapping-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845907 8767_ $$85647615$$92019-08-02$$d2019-08-02$$eHybrid-OA$$jZahlung erfolgt$$znachträgliche OA Freischaltung
000845907 909CO $$ooai:juser.fz-juelich.de:845907$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000845907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
000845907 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000845907 9141_ $$y2018
000845907 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845907 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000845907 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845907 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2015
000845907 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845907 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845907 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845907 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845907 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845907 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845907 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845907 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845907 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845907 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845907 920__ $$lyes
000845907 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000845907 980__ $$ajournal
000845907 980__ $$aVDB
000845907 980__ $$aUNRESTRICTED
000845907 980__ $$aI:(DE-Juel1)INM-7-20090406
000845907 980__ $$aAPC
000845907 9801_ $$aAPC
000845907 9801_ $$aFullTexts