001     845907
005     20220930130149.0
024 7 _ |a 10.1002/hbm.24213
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a pmid:29770530
|2 pmid
024 7 _ |a WOS:000441276600025
|2 WOS
024 7 _ |a 2128/21656
|2 Handle
024 7 _ |a altmetric:41912406
|2 altmetric
037 _ _ |a FZJ-2018-03105
082 _ _ |a 610
100 1 _ |a Wu, Jianxiao
|0 0000-0002-4866-272X
|b 0
245 _ _ |a Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems
260 _ _ |a New York, NY
|c 2018
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1564726388_10925
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Singapore MOE Tier 2, Grant/Award Number: MOE2014‐T2‐2‐016; NUS Strategic Research, Grant/Award Number: DPRT/944/09/14; NUS SOM Aspiration Fund, Grant/Award Number: R185000271720; Singapore NMRC, Grant/Award Number: CBRG/0088/2015; NUS YIA; Singapore National Research Foundation (NRF) Fellowship (Class of 2017); Center for Functional Neuroimaging Technologies, Grant/Award Number: P41EB015896; Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, Grant/Award Numbers: 1S10RR023401, 1S10RR019307, 1S10RR023043; National Institute of Mental Health, Grant/Award Number: R01‐MH074457; Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain”; European Union's Horizon 2020 Research and Innovation Programme, Grant/Award Number: 7202070 (HBP SGA1); National Institute for Biomedical Imaging and Bioengineering, Grant/Award Numbers: P41EB015896, 1R01EB023281, R01EB006758, R21EB018907, R01EB019956; National Institute on Aging, Grant/Award Numbers: 5R01AG008122, R01AG016495; National Institute of Diabetes and Digestive and Kidney Diseases, Grant/Award Number: 1‐R21‐DK‐108277‐01; National Institute for Neurological Disorders and Stroke, Grant/Award Numbers: R01NS0525851, R21NS072652, R01NS070963, R01NS083534, 5U01NS086625; NIH Blueprint for Neuroscience Research, Grant/Award Number: 5U01‐MH093765
520 _ _ |a The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registration fusion) was previously proposed, but not widely adopted. Two implementations of the registration fusion (RF) approach were considered, with one implementation utilizing the Advanced Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to the coordinate system, rather than via another coordinate system. Only in scenarios where the optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsaverage), should the approaches evaluated in this manuscript be considered. In these scenarios, we recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu2017_RegistrationFusion).
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ngo, Gia H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Greve, Douglas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Jingwei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a He, Tong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fischl, Bruce
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 6
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/hbm.24213
|0 PERI:(DE-600)1492703-2
|n 9
|p 3793-3808
|t Human brain mapping
|v 39
|y 2018
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/845907/files/AS_1190801201615.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/845907/files/Preprint_180416.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/845907/files/Wu_et_al-2018-Human_Brain_Mapping-1.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/845907/files/AS_1190801201615.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/845907/files/Wu_et_al-2018-Human_Brain_Mapping-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:845907
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21