000845915 001__ 845915
000845915 005__ 20240712113046.0
000845915 0247_ $$2doi$$a10.1039/C8CP01485J
000845915 0247_ $$2ISSN$$a1463-9076
000845915 0247_ $$2ISSN$$a1463-9084
000845915 0247_ $$2Handle$$a2128/19121
000845915 0247_ $$2pmid$$apmid:29873343
000845915 0247_ $$2WOS$$aWOS:000436032900029
000845915 037__ $$aFZJ-2018-03113
000845915 082__ $$a540
000845915 1001_ $$0P:(DE-Juel1)168152$$aOldiges, K.$$b0
000845915 245__ $$aUnderstanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends
000845915 260__ $$aCambridge$$bRSC Publ.$$c2018
000845915 3367_ $$2DRIVER$$aarticle
000845915 3367_ $$2DataCite$$aOutput Types/Journal article
000845915 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530000199_21479
000845915 3367_ $$2BibTeX$$aARTICLE
000845915 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845915 3367_ $$00$$2EndNote$$aJournal Article
000845915 520__ $$aTo unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.
000845915 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000845915 588__ $$aDataset connected to CrossRef
000845915 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b1
000845915 7001_ $$0P:(DE-HGF)0$$aEbrahiminia, M.$$b2
000845915 7001_ $$0P:(DE-HGF)0$$aHooper, J. B.$$b3
000845915 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, I.$$b4
000845915 7001_ $$00000-0003-2592-0287$$aHeuer, A.$$b5
000845915 7001_ $$00000-0002-3884-3308$$aBedrov, D.$$b6$$eCorresponding author
000845915 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b7
000845915 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, G.$$b8$$eCorresponding author
000845915 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C8CP01485J$$gp. 10.1039.C8CP01485J$$n24$$p16579-16591$$tPhysical chemistry, chemical physics$$v20$$x1463-9076$$y2018
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/SL31538%20C17052.pdf
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/PCCP2018_KOldiges.pdf$$yOpenAccess
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/SL31538%20C17052.gif?subformat=icon$$xicon
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/SL31538%20C17052.jpg?subformat=icon-1440$$xicon-1440
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/SL31538%20C17052.jpg?subformat=icon-180$$xicon-180
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/SL31538%20C17052.jpg?subformat=icon-640$$xicon-640
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/SL31538%20C17052.pdf?subformat=pdfa$$xpdfa
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/PCCP2018_KOldiges.gif?subformat=icon$$xicon$$yOpenAccess
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/PCCP2018_KOldiges.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/PCCP2018_KOldiges.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845915 8564_ $$uhttps://juser.fz-juelich.de/record/845915/files/PCCP2018_KOldiges.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845915 8767_ $$8SL31538$$92018-05-18$$d2018-05-22$$eHybrid-OA$$jZahlung erfolgt
000845915 909CO $$ooai:juser.fz-juelich.de:845915$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000845915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168152$$aForschungszentrum Jülich$$b0$$kFZJ
000845915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b1$$kFZJ
000845915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b4$$kFZJ
000845915 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-2592-0287$$aForschungszentrum Jülich$$b5$$kFZJ
000845915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000845915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b8$$kFZJ
000845915 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000845915 9141_ $$y2018
000845915 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000845915 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845915 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845915 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000845915 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845915 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845915 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845915 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845915 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000845915 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845915 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845915 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845915 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845915 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845915 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000845915 9801_ $$aAPC
000845915 9801_ $$aFullTexts
000845915 980__ $$ajournal
000845915 980__ $$aVDB
000845915 980__ $$aUNRESTRICTED
000845915 980__ $$aI:(DE-Juel1)IEK-12-20141217
000845915 980__ $$aAPC
000845915 981__ $$aI:(DE-Juel1)IMD-4-20141217