000845953 001__ 845953
000845953 005__ 20220930130149.0
000845953 0247_ $$2doi$$a10.1371/journal.pcbi.1006113
000845953 0247_ $$2ISSN$$a1553-734X
000845953 0247_ $$2ISSN$$a1553-7358
000845953 0247_ $$2Handle$$a2128/18636
000845953 0247_ $$2pmid$$apmid:29746458
000845953 0247_ $$2WOS$$aWOS:000434012100011
000845953 0247_ $$2altmetric$$aaltmetric:41044245
000845953 037__ $$aFZJ-2018-03131
000845953 082__ $$a570
000845953 1001_ $$0P:(DE-Juel1)164577$$aManos, Thanos$$b0$$eCorresponding author
000845953 245__ $$aHow stimulation frequency and intensity impact on the long-lasting effects of coordinated reset stimulation
000845953 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2018
000845953 3367_ $$2DRIVER$$aarticle
000845953 3367_ $$2DataCite$$aOutput Types/Journal article
000845953 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527056637_32309
000845953 3367_ $$2BibTeX$$aARTICLE
000845953 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845953 3367_ $$00$$2EndNote$$aJournal Article
000845953 500__ $$aThe study was funded by the Helmholtz Society (TM, MZ, PAT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
000845953 520__ $$aSeveral brain diseases are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was computationally designed to specifically counteract abnormal neuronal synchronization processes by desynchronization. In the presence of spike-timing-dependent plasticity (STDP) this may lead to a decrease of synaptic excitatory weights and ultimately to an anti-kindling, i.e. unlearning of abnormal synaptic connectivity and abnormal neuronal synchrony. The long-lasting desynchronizing impact of CR stimulation has been verified in pre-clinical and clinical proof of concept studies. However, as yet it is unclear how to optimally choose the CR stimulation frequency, i.e. the repetition rate at which the CR stimuli are delivered. This work presents the first computational study on the dependence of the acute and long-term outcome on the CR stimulation frequency in neuronal networks with STDP. For this purpose, CR stimulation was applied with Rapidly Varying Sequences (RVS) as well as with Slowly Varying Sequences (SVS) in a wide range of stimulation frequencies and intensities. Our findings demonstrate that acute desynchronization, achieved during stimulation, does not necessarily lead to long-term desynchronization after cessation of stimulation. By comparing the long-term effects of the two different CR protocols, the RVS CR stimulation turned out to be more robust against variations of the stimulation frequency. However, SVS CR stimulation can obtain stronger anti-kindling effects. We revealed specific parameter ranges that are favorable for long-term desynchronization. For instance, RVS CR stimulation at weak intensities and with stimulation frequencies in the range of the neuronal firing rates turned out to be effective and robust, in particular, if no closed loop adaptation of stimulation parameters is (technically) available. From a clinical standpoint, this may be relevant in the context of both invasive as well as non-invasive CR stimulation.
000845953 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000845953 588__ $$aDataset connected to CrossRef
000845953 7001_ $$0P:(DE-Juel1)136723$$aZeitler, Magteld$$b1
000845953 7001_ $$0P:(DE-HGF)0$$aTass, Peter A.$$b2
000845953 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1006113$$gVol. 14, no. 5, p. e1006113 -$$n5$$pe1006113 -$$tPLoS Computational Biology$$v14$$x1553-7358$$y2018
000845953 8564_ $$uhttps://juser.fz-juelich.de/record/845953/files/How%20stimulation%20frequency%20and%20intensity%20impact%20on%20the%20long-lasting%20effects%20of%20coordinated%20reset%20stimulation%202018.pdf$$yOpenAccess
000845953 8564_ $$uhttps://juser.fz-juelich.de/record/845953/files/How%20stimulation%20frequency%20and%20intensity%20impact%20on%20the%20long-lasting%20effects%20of%20coordinated%20reset%20stimulation%202018.gif?subformat=icon$$xicon$$yOpenAccess
000845953 8564_ $$uhttps://juser.fz-juelich.de/record/845953/files/How%20stimulation%20frequency%20and%20intensity%20impact%20on%20the%20long-lasting%20effects%20of%20coordinated%20reset%20stimulation%202018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845953 8564_ $$uhttps://juser.fz-juelich.de/record/845953/files/How%20stimulation%20frequency%20and%20intensity%20impact%20on%20the%20long-lasting%20effects%20of%20coordinated%20reset%20stimulation%202018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845953 8564_ $$uhttps://juser.fz-juelich.de/record/845953/files/How%20stimulation%20frequency%20and%20intensity%20impact%20on%20the%20long-lasting%20effects%20of%20coordinated%20reset%20stimulation%202018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845953 8564_ $$uhttps://juser.fz-juelich.de/record/845953/files/How%20stimulation%20frequency%20and%20intensity%20impact%20on%20the%20long-lasting%20effects%20of%20coordinated%20reset%20stimulation%202018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845953 8767_ $$8PAB222601$$92018-06-01$$d2018-06-21$$eAPC$$jDeposit$$lDeposit: PLoS$$pPCOMPBIOL-D-17-01447$$z2250.00 USD
000845953 909CO $$ooai:juser.fz-juelich.de:845953$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000845953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164577$$aForschungszentrum Jülich$$b0$$kFZJ
000845953 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000845953 9141_ $$y2018
000845953 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845953 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845953 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845953 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845953 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2015
000845953 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000845953 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000845953 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845953 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845953 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845953 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845953 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845953 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845953 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845953 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845953 920__ $$lyes
000845953 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000845953 9801_ $$aFullTexts
000845953 980__ $$ajournal
000845953 980__ $$aVDB
000845953 980__ $$aUNRESTRICTED
000845953 980__ $$aI:(DE-Juel1)INM-7-20090406
000845953 980__ $$aAPC