001     845967
005     20210129233747.0
024 7 _ |a 2128/19110
|2 Handle
037 _ _ |a FZJ-2018-03145
100 1 _ |a Naz, Bibi
|0 P:(DE-Juel1)169794
|b 0
|e Corresponding author
|u fzj
111 2 _ |a EGU General Assembly 2018
|c Vienna
|d 2018-04-08 - 2018-04-13
|w Austria
245 _ _ |a Assimilation of remotely sensed soil moisture into the Community Land Model for improving hydrologic predictions over Europe
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1529917184_21482
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Accurate and reliable hydrologic simulations are important for many applications, such as water resources management, future water availability projections and predictions of extreme events. However, the accuracy of waterbalance estimates is limited by the lack of observations at large scales and the uncertainties of model simulations due to errors in model structure and inputs (e.g. hydrologic parameters and atmospheric forcings). In this study, weused a joint model parameter calibration and data assimilation approach to improve continental-scale hydrologic estimates of soil moisture, surface runoff, discharge and total water storage. The assimilation experiment was conductedover a time period from 2000 – 2014 with the Community Land Model, version 3.5 (CLM3.5) integrated with the Parallel Data Assimilation Framework (PDAF) in the Terrestrial System Modeling Platform (TerrSysMPPDAF)at a spatial resolution of approximately 3km over Europe. The model was forced with the high-resolution reanalysis COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ). Using this modeling framework,the coarse-resolution remotely sensed ESA CCI soil moisture (SM) daily data were first downscaled to the model resolution and then assimilated into TerrSysMP-PDAF. The impact of remotely sensed soil moisture data on improvingcontinental-scale hydrologic estimates was analyzed through comparisons with independent observationsincluding ESA CCI-SM, E-RUN runoff, GRDC river discharge and total water storage from GRACE satellite.Cross-validation with independent CCI-SM observations show that estimates of soil moisture improved, particularlyin the summer and autumn seasons. The assimilation experiment also showed overall improvements in runoffparticularly during peak runoff. The results demonstrate the potential of assimilating satellite soil moisture observationsto improve high-resolution hydrologic model simulations at the continental scale, which is useful for waterresources assessment and monitoring.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a EoCoE - Energy oriented Centre of Excellence for computer applications (676629)
|0 G:(EU-Grant)676629
|c 676629
|f H2020-EINFRA-2015-1
|x 1
700 1 _ |a Kurtz, Wolfgang
|0 P:(DE-Juel1)140349
|b 1
700 1 _ |a Springer, Anne
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 3
|u fzj
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 4
|u fzj
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 5
|u fzj
700 1 _ |a Sharples, Wendy
|0 P:(DE-Juel1)168536
|b 6
|u fzj
700 1 _ |a Görgen, Klaus
|0 P:(DE-Juel1)156253
|b 7
|u fzj
700 1 _ |a Keune, Jessica
|0 P:(DE-HGF)0
|b 8
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/845967/files/EGU2018-13198.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/845967/files/EGU2018-13198.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/845967/files/EGU2018-13198.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/845967/files/EGU2018-13198.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/845967/files/EGU2018-13198.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/845967/files/EGU2018-13198.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:845967
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168536
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156253
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21