000845978 001__ 845978
000845978 005__ 20210129233750.0
000845978 0247_ $$2doi$$a10.1021/acs.jpcc.8b02269
000845978 0247_ $$2ISSN$$a1932-7447
000845978 0247_ $$2ISSN$$a1932-7455
000845978 0247_ $$2WOS$$aWOS:000433403400026
000845978 037__ $$aFZJ-2018-03150
000845978 082__ $$a540
000845978 1001_ $$0P:(DE-HGF)0$$aBauer, O.$$b0
000845978 245__ $$aAdsorption of 3,4,9,10-Perylenetetracarboxylic Acid Dianhydride on the Cu 3 Au(111) Surface Studied by Normal-Incidence X-ray Standing Waves
000845978 260__ $$aWashington, DC$$bSoc.$$c2018
000845978 3367_ $$2DRIVER$$aarticle
000845978 3367_ $$2DataCite$$aOutput Types/Journal article
000845978 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527166746_12643
000845978 3367_ $$2BibTeX$$aARTICLE
000845978 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845978 3367_ $$00$$2EndNote$$aJournal Article
000845978 520__ $$aWe report on the structure formation and the adsorption height of the organic semiconductor molecule 3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA) on the Cu3Au(111) surface. The results are based on a detailed analysis of the vertical positions of the carbon and oxygen atoms of PTCDA versus the topmost layer of the Cu3Au surface by the normal-incidence X-ray standing wave (NIXSW) technique. The oxygen atoms are found to be located at a larger vertical height than the perylene core, and thus the molecule exhibits a boat-like distortion. The van der Waals radii corrected adsorption height of the perylene core follows the trend with the work function, which was found for PTCDA on the (111) surfaces of the pure coinage metals. In addition, changes related to the exposure to synchrotron radiation are reported. We find an increase in Cu and a reduction of the Au enrichment of the as-prepared Cu3Au(111) surface, while the adsorption height of the PTCDA decreases, indicating an X-ray beam-induced transition to a second stronger bonded state of the PTCDA.
000845978 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000845978 588__ $$aDataset connected to CrossRef
000845978 7001_ $$0P:(DE-HGF)0$$aIkonomov, J.$$b1
000845978 7001_ $$0P:(DE-HGF)0$$aSchmitz, C. H.$$b2
000845978 7001_ $$0P:(DE-Juel1)142384$$aWillenbockel, M.$$b3
000845978 7001_ $$0P:(DE-HGF)0$$aSoubatch, S.$$b4
000845978 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b5
000845978 7001_ $$0P:(DE-HGF)0$$aSokolowski, M.$$b6$$eCorresponding author
000845978 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.8b02269$$gVol. 122, no. 20, p. 10904 - 10917$$n20$$p10904 - 10917$$tThe @journal of physical chemistry <Washington, DC> / C$$v122$$x1932-7455$$y2018
000845978 8564_ $$uhttps://juser.fz-juelich.de/record/845978/files/acs.jpcc.8b02269.pdf$$yRestricted
000845978 8564_ $$uhttps://juser.fz-juelich.de/record/845978/files/acs.jpcc.8b02269.gif?subformat=icon$$xicon$$yRestricted
000845978 8564_ $$uhttps://juser.fz-juelich.de/record/845978/files/acs.jpcc.8b02269.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845978 8564_ $$uhttps://juser.fz-juelich.de/record/845978/files/acs.jpcc.8b02269.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845978 8564_ $$uhttps://juser.fz-juelich.de/record/845978/files/acs.jpcc.8b02269.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845978 8564_ $$uhttps://juser.fz-juelich.de/record/845978/files/acs.jpcc.8b02269.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845978 909CO $$ooai:juser.fz-juelich.de:845978$$pVDB
000845978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b5$$kFZJ
000845978 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000845978 9141_ $$y2018
000845978 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2015
000845978 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845978 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845978 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845978 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845978 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845978 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845978 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845978 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845978 920__ $$lyes
000845978 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000845978 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000845978 980__ $$ajournal
000845978 980__ $$aVDB
000845978 980__ $$aI:(DE-Juel1)PGI-3-20110106
000845978 980__ $$aI:(DE-82)080009_20140620
000845978 980__ $$aUNRESTRICTED