000845997 001__ 845997
000845997 005__ 20210129233758.0
000845997 0247_ $$2doi$$a10.1016/j.apenergy.2018.03.099
000845997 0247_ $$2ISSN$$a0306-2619
000845997 0247_ $$2ISSN$$a1872-9118
000845997 0247_ $$2WOS$$aWOS:000433649900022
000845997 037__ $$aFZJ-2018-03169
000845997 082__ $$a620
000845997 1001_ $$0P:(DE-Juel1)145221$$aLahnaoui, Amin$$b0$$eCorresponding author
000845997 245__ $$aOptimizing hydrogen transportation system for mobility by minimizing the cost of transportation via compressed gas truck in North Rhine-Westphalia
000845997 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000845997 3367_ $$2DRIVER$$aarticle
000845997 3367_ $$2DataCite$$aOutput Types/Journal article
000845997 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528121011_26169
000845997 3367_ $$2BibTeX$$aARTICLE
000845997 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845997 3367_ $$00$$2EndNote$$aJournal Article
000845997 520__ $$aThis study develops a method to identify the minimum cost of establishing hydrogen infrastructure using a mono-objective linear optimization. It focuses on minimizing both the capital and operation costs of hydrogen transportation. This includes costs associated with the establishment of storage and compression facilities as well as transportation links.The overarching goal of the study is therefore to build a cost-efficient transportation network using compressed gas trucks for mobility and to apply it to the federal state of North Rhine-Westphalia by 2050. It is assumed that hydrogen production will be established by 2050 and, based on excess electricity from wind energy in North Rhine-Westphalia and the surrounding areas, limited by the projected installed wind installed capacity by 2050. Hydrogen is then distributed as a compressed gas, depending on the hydrogen demand of a given year, for each NUTS 3 district of North Rhine-Westphalia in 2030 and 2050.The results show that the hydrogen demand on the region, which increases from 2030 to 2050, has an impact on how and at which flow hydrogen demand is transported from the production nodes to the different distribution hubs. In 2050, hydrogen is predominantly transported and stored between the storage nodes and the distribution hubs at a high-pressure level of 500 and 540 bar, whilst it is mainly transported at 250 and 350 bar in 2030. Production is predominantly found to be transported at high pressure for both years and located in the region in 2030, whereas imports from the south and north are required in 2050
000845997 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000845997 588__ $$aDataset connected to CrossRef
000845997 7001_ $$0P:(DE-Juel1)168163$$aWulf, Christina$$b1
000845997 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b2$$ufzj
000845997 7001_ $$0P:(DE-HGF)0$$aDalmazzone, Didier$$b3
000845997 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.03.099$$gVol. 223, p. 317 - 328$$p317 - 328$$tApplied energy$$v223$$x0306-2619$$y2018
000845997 8564_ $$uhttps://juser.fz-juelich.de/record/845997/files/1-s2.0-S0306261918304380-main.pdf$$yRestricted
000845997 8564_ $$uhttps://juser.fz-juelich.de/record/845997/files/1-s2.0-S0306261918304380-main.gif?subformat=icon$$xicon$$yRestricted
000845997 8564_ $$uhttps://juser.fz-juelich.de/record/845997/files/1-s2.0-S0306261918304380-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845997 8564_ $$uhttps://juser.fz-juelich.de/record/845997/files/1-s2.0-S0306261918304380-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845997 8564_ $$uhttps://juser.fz-juelich.de/record/845997/files/1-s2.0-S0306261918304380-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845997 8564_ $$uhttps://juser.fz-juelich.de/record/845997/files/1-s2.0-S0306261918304380-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845997 909CO $$ooai:juser.fz-juelich.de:845997$$pVDB
000845997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b0$$kFZJ
000845997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168163$$aForschungszentrum Jülich$$b1$$kFZJ
000845997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b2$$kFZJ
000845997 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000845997 9141_ $$y2018
000845997 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000845997 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845997 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845997 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845997 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845997 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845997 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845997 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845997 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845997 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845997 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845997 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000845997 920__ $$lyes
000845997 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000845997 980__ $$ajournal
000845997 980__ $$aVDB
000845997 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000845997 980__ $$aUNRESTRICTED