000846015 001__ 846015
000846015 005__ 20210129233812.0
000846015 0247_ $$2doi$$a10.1111/nph.14960
000846015 0247_ $$2ISSN$$a0028-646X
000846015 0247_ $$2ISSN$$a1469-8137
000846015 0247_ $$2pmid$$apmid:29314018
000846015 0247_ $$2WOS$$aWOS:000424284400026
000846015 0247_ $$2altmetric$$aaltmetric:31261085
000846015 037__ $$aFZJ-2018-03185
000846015 041__ $$aEnglish
000846015 082__ $$a580
000846015 1001_ $$0P:(DE-HGF)0$$aMatei, Alexandra$$b0$$eFirst author
000846015 245__ $$aHow to make a tumour: cell type specific dissection of Ustilago maydis- induced tumour development in maize leaves
000846015 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2018
000846015 3367_ $$2DRIVER$$aarticle
000846015 3367_ $$2DataCite$$aOutput Types/Journal article
000846015 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527688562_27516
000846015 3367_ $$2BibTeX$$aARTICLE
000846015 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000846015 3367_ $$00$$2EndNote$$aJournal Article
000846015 520__ $$a The biotrophic fungus Ustilago maydis causes smut disease on maize (Zea mays), which is characterized by immense plant tumours. To establish disease and reprogram organ primordia to tumours, U. maydis deploys effector proteins in an organ‐specific manner. However, the cellular contribution to leaf tumours remains unknown. We investigated leaf tumour formation at the tissue‐ and cell type‐specific levels. Cytology and metabolite analysis were deployed to understand the cellular basis for tumourigenesis. Laser‐capture microdissection was performed to gain a cell type‐specific transcriptome of U. maydis during tumour formation. In vivo visualization of plant DNA synthesis identified bundle sheath cells as the origin of hyperplasic tumour cells, while mesophyll cells become hypertrophic tumour cells. Cell type‐specific transcriptome profiling of U. maydis revealed tailored expression of fungal effector genes. Moreover, U. maydis See1 was identified as the first cell type‐specific fungal effector, being required for induction of cell cycle reactivation in bundle sheath cells. Identification of distinct cellular mechanisms in two different leaf cell types and of See1 as an effector for induction of proliferation of bundle sheath cells are major steps in understanding U. maydis‐induced tumour formation. Moreover, the cell type‐specific U. maydis transcriptome data are a valuable resource to the scientific community.
000846015 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000846015 588__ $$aDataset connected to CrossRef
000846015 7001_ $$0P:(DE-HGF)0$$aErnst, Corinna$$b1
000846015 7001_ $$0P:(DE-Juel1)145720$$aGünl, Markus$$b2$$ufzj
000846015 7001_ $$0P:(DE-Juel1)129410$$aThiele, Björn$$b3$$ufzj
000846015 7001_ $$0P:(DE-HGF)0$$aAltmüller, Janine$$b4
000846015 7001_ $$0P:(DE-HGF)0$$aWalbot, Virginia$$b5
000846015 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b6$$ufzj
000846015 7001_ $$0P:(DE-HGF)0$$aDoehlemann, Gunther$$b7$$eCorresponding author
000846015 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/nph.14960$$gVol. 217, no. 4, p. 1681 - 1695$$n4$$p1681 - 1695$$tThe new phytologist$$v217$$x0028-646X$$y2018
000846015 8564_ $$uhttps://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.pdf$$yRestricted
000846015 8564_ $$uhttps://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.gif?subformat=icon$$xicon$$yRestricted
000846015 8564_ $$uhttps://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000846015 8564_ $$uhttps://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.jpg?subformat=icon-180$$xicon-180$$yRestricted
000846015 8564_ $$uhttps://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.jpg?subformat=icon-640$$xicon-640$$yRestricted
000846015 8564_ $$uhttps://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.pdf?subformat=pdfa$$xpdfa$$yRestricted
000846015 909CO $$ooai:juser.fz-juelich.de:846015$$pVDB
000846015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145720$$aForschungszentrum Jülich$$b2$$kFZJ
000846015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129410$$aForschungszentrum Jülich$$b3$$kFZJ
000846015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b6$$kFZJ
000846015 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000846015 9141_ $$y2018
000846015 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000846015 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW PHYTOL : 2015
000846015 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000846015 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000846015 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000846015 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000846015 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000846015 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000846015 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000846015 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000846015 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000846015 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000846015 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000846015 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEW PHYTOL : 2015
000846015 920__ $$lyes
000846015 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000846015 980__ $$ajournal
000846015 980__ $$aVDB
000846015 980__ $$aI:(DE-Juel1)IBG-2-20101118
000846015 980__ $$aUNRESTRICTED