001     846015
005     20210129233812.0
024 7 _ |a 10.1111/nph.14960
|2 doi
024 7 _ |a 0028-646X
|2 ISSN
024 7 _ |a 1469-8137
|2 ISSN
024 7 _ |a pmid:29314018
|2 pmid
024 7 _ |a WOS:000424284400026
|2 WOS
024 7 _ |a altmetric:31261085
|2 altmetric
037 _ _ |a FZJ-2018-03185
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Matei, Alexandra
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a How to make a tumour: cell type specific dissection of Ustilago maydis- induced tumour development in maize leaves
260 _ _ |a Oxford [u.a.]
|c 2018
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1527688562_27516
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The biotrophic fungus Ustilago maydis causes smut disease on maize (Zea mays), which is characterized by immense plant tumours. To establish disease and reprogram organ primordia to tumours, U. maydis deploys effector proteins in an organ‐specific manner. However, the cellular contribution to leaf tumours remains unknown. We investigated leaf tumour formation at the tissue‐ and cell type‐specific levels. Cytology and metabolite analysis were deployed to understand the cellular basis for tumourigenesis. Laser‐capture microdissection was performed to gain a cell type‐specific transcriptome of U. maydis during tumour formation. In vivo visualization of plant DNA synthesis identified bundle sheath cells as the origin of hyperplasic tumour cells, while mesophyll cells become hypertrophic tumour cells. Cell type‐specific transcriptome profiling of U. maydis revealed tailored expression of fungal effector genes. Moreover, U. maydis See1 was identified as the first cell type‐specific fungal effector, being required for induction of cell cycle reactivation in bundle sheath cells. Identification of distinct cellular mechanisms in two different leaf cell types and of See1 as an effector for induction of proliferation of bundle sheath cells are major steps in understanding U. maydis‐induced tumour formation. Moreover, the cell type‐specific U. maydis transcriptome data are a valuable resource to the scientific community.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ernst, Corinna
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Günl, Markus
|0 P:(DE-Juel1)145720
|b 2
|u fzj
700 1 _ |a Thiele, Björn
|0 P:(DE-Juel1)129410
|b 3
|u fzj
700 1 _ |a Altmüller, Janine
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Walbot, Virginia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 6
|u fzj
700 1 _ |a Doehlemann, Gunther
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1111/nph.14960
|g Vol. 217, no. 4, p. 1681 - 1695
|0 PERI:(DE-600)1472194-6
|n 4
|p 1681 - 1695
|t The new phytologist
|v 217
|y 2018
|x 0028-646X
856 4 _ |u https://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/846015/files/Matei_New%20Phytologist_2018_217_1681.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:846015
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129410
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145719
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW PHYTOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEW PHYTOL : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21