000846021 001__ 846021
000846021 005__ 20210129233819.0
000846021 0247_ $$2doi$$a10.1016/j.freeradbiomed.2018.04.354
000846021 0247_ $$2ISSN$$a0891-5849
000846021 0247_ $$2ISSN$$a1873-4596
000846021 0247_ $$2WOS$$aWOS:000432836500339
000846021 037__ $$aFZJ-2018-03191
000846021 041__ $$aEnglish
000846021 082__ $$a570
000846021 1001_ $$0P:(DE-HGF)0$$aErdélyi, Annabella$$b0
000846021 1112_ $$a19th Meeting of the International Society for Free Radical Research (SFRRI)$$cLisbon$$d2018-06-04 - 2018-06-07$$wPortugal
000846021 245__ $$aGenetic analysis of mitochondrial functions and stress responses
000846021 260__ $$c2018
000846021 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1527688178_24726
000846021 3367_ $$033$$2EndNote$$aConference Paper
000846021 3367_ $$2BibTeX$$aINPROCEEDINGS
000846021 3367_ $$2DRIVER$$aconferenceObject
000846021 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000846021 3367_ $$2ORCID$$aOTHER
000846021 520__ $$aUnfavorable environmental conditions limit plant growth and require extensive adaptation for survival. During abiotic stress, production of reactive oxygen species (ROS) can increase and create additional oxidative stress for the plants. Mitochondria regulate cellular energy homeostasis and redox balance by integrating metabolic pathways that are important in adaptive responses to stress conditions. In mitochondria, over-reduction of the electron transport chain is the primary reason for ROS accumulation, which can be reduced by protecting and stabilizing the electron flow. To reveal the function of genes encoding members of the mitochondrial electron transport in stress responses, we are characterizing 13 Arabidopsis thaliana mutants carrying mutations in genes encoding such proteins. When compared to wild type several mutants showed morphological and physiological changes under abiotic stress conditions. Phenotypic differences in tolerance to drought and salinity were revealed through in vitro germination and growth tests, as well as by complex phenotyping of soil-grown plants. Several mutants showed altered tolerance to osmotic, oxidative and salt stress. In some cases, we found a strong correlation between the mutations and the photosynthetic activity and energy production.
000846021 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000846021 536__ $$0G:(EU-Grant)284443$$aEPPN - European Plant Phenotyping Network (284443)$$c284443$$fFP7-INFRASTRUCTURES-2011-1$$x1
000846021 588__ $$aDataset connected to CrossRef
000846021 7001_ $$0P:(DE-HGF)0$$aValkai, Ildikó$$b1
000846021 7001_ $$0P:(DE-HGF)0$$aRigó, Gábor$$b2
000846021 7001_ $$0P:(DE-HGF)0$$aSzepesi, Ágnes$$b3
000846021 7001_ $$0P:(DE-HGF)0$$aAlexa, Dávid$$b4
000846021 7001_ $$0P:(DE-HGF)0$$aVarga, Mónika$$b5
000846021 7001_ $$0P:(DE-Juel1)159374$$aKoerber, Niklas$$b6
000846021 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b7$$ufzj
000846021 7001_ $$0P:(DE-HGF)0$$aSzabados, László$$b8
000846021 7001_ $$0P:(DE-HGF)0$$aZsigmond, Laura$$b9$$eCorresponding author
000846021 773__ $$0PERI:(DE-600)1483653-1$$a10.1016/j.freeradbiomed.2018.04.354$$gVol. 120, p. S107 -$$x0891-5849$$y2018
000846021 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S0891584918305197
000846021 909CO $$ooai:juser.fz-juelich.de:846021$$pec_fundedresources$$pVDB$$popenaire
000846021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b7$$kFZJ
000846021 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary$$b9
000846021 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000846021 9141_ $$y2018
000846021 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000846021 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFREE RADICAL BIO MED : 2015
000846021 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000846021 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000846021 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000846021 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000846021 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000846021 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000846021 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000846021 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000846021 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000846021 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000846021 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000846021 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFREE RADICAL BIO MED : 2015
000846021 920__ $$lyes
000846021 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000846021 980__ $$aabstract
000846021 980__ $$aVDB
000846021 980__ $$aI:(DE-Juel1)IBG-2-20101118
000846021 980__ $$aUNRESTRICTED