001     846021
005     20210129233819.0
024 7 _ |a 10.1016/j.freeradbiomed.2018.04.354
|2 doi
024 7 _ |a 0891-5849
|2 ISSN
024 7 _ |a 1873-4596
|2 ISSN
024 7 _ |a WOS:000432836500339
|2 WOS
037 _ _ |a FZJ-2018-03191
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Erdélyi, Annabella
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 19th Meeting of the International Society for Free Radical Research (SFRRI)
|c Lisbon
|d 2018-06-04 - 2018-06-07
|w Portugal
245 _ _ |a Genetic analysis of mitochondrial functions and stress responses
260 _ _ |c 2018
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1527688178_24726
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Unfavorable environmental conditions limit plant growth and require extensive adaptation for survival. During abiotic stress, production of reactive oxygen species (ROS) can increase and create additional oxidative stress for the plants. Mitochondria regulate cellular energy homeostasis and redox balance by integrating metabolic pathways that are important in adaptive responses to stress conditions. In mitochondria, over-reduction of the electron transport chain is the primary reason for ROS accumulation, which can be reduced by protecting and stabilizing the electron flow. To reveal the function of genes encoding members of the mitochondrial electron transport in stress responses, we are characterizing 13 Arabidopsis thaliana mutants carrying mutations in genes encoding such proteins. When compared to wild type several mutants showed morphological and physiological changes under abiotic stress conditions. Phenotypic differences in tolerance to drought and salinity were revealed through in vitro germination and growth tests, as well as by complex phenotyping of soil-grown plants. Several mutants showed altered tolerance to osmotic, oxidative and salt stress. In some cases, we found a strong correlation between the mutations and the photosynthetic activity and energy production.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a EPPN - European Plant Phenotyping Network (284443)
|0 G:(EU-Grant)284443
|c 284443
|f FP7-INFRASTRUCTURES-2011-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Valkai, Ildikó
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rigó, Gábor
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Szepesi, Ágnes
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Alexa, Dávid
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Varga, Mónika
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Koerber, Niklas
|0 P:(DE-Juel1)159374
|b 6
700 1 _ |a Fiorani, Fabio
|0 P:(DE-Juel1)143649
|b 7
|u fzj
700 1 _ |a Szabados, László
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zsigmond, Laura
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.freeradbiomed.2018.04.354
|0 PERI:(DE-600)1483653-1
|y 2018
|g Vol. 120, p. S107 -
|x 0891-5849
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S0891584918305197
909 C O |o oai:juser.fz-juelich.de:846021
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)143649
910 1 _ |a Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FREE RADICAL BIO MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FREE RADICAL BIO MED : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21