000847883 001__ 847883
000847883 005__ 20250129094152.0
000847883 0247_ $$2Handle$$a2128/19698
000847883 0247_ $$2ISSN$$a1866-1807
000847883 020__ $$a978-3-95806-351-8
000847883 037__ $$aFZJ-2018-03209
000847883 041__ $$aEnglish
000847883 1001_ $$0P:(DE-Juel1)161217$$aWang, Liming$$b0$$eCorresponding author$$ufzj
000847883 245__ $$aManipulation of magnetism in iron oxide nanoparticle / BaTiO$_{3}$ composites and low-dimensional iron oxide nanoparticle arrays$$f- 2018-06-30
000847883 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2018
000847883 300__ $$aVI, 151 S.
000847883 3367_ $$2DataCite$$aOutput Types/Dissertation
000847883 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000847883 3367_ $$2ORCID$$aDISSERTATION
000847883 3367_ $$2BibTeX$$aPHDTHESIS
000847883 3367_ $$02$$2EndNote$$aThesis
000847883 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1554149837_32379
000847883 3367_ $$2DRIVER$$adoctoralThesis
000847883 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v180
000847883 502__ $$aRWTH Aachen, Diss., 2018$$bDr.$$cRWTH Aachen$$d2018
000847883 520__ $$aFerrimagnetic (FiM) iron oxide nanoparticles (NPs) on top of ferroelectric BaTiO$_{3}$(BTO) substrates were prepared and a magnetoelectric coupling (MEC) effect was observed in the heterostructures. Iron oxide NPs first were self-assembled as amonolayer on top of BTO substrates. Grazing incidence small angle x-ray scattering(GISAXS) and scanning electron microscopy (SEM) confirm a close-packed hexagonal order of the NP monolayers. By inserting a Ti layer and further capping with an Au layer, an enhanced MEC effect was observed. Scanning transmission electron microscopy (STEM) provides information about the layer structure of the sample. The magnetization shows sharp magnetization jumps at the phase transition temperatures of the BTO substrate. Electric field manipulation of magnetism was performed using a superconducting quantum interference device (SQUID) setup with an electric field implemented. A butterfly shaped curve of the magnetic moment vs. DC electric field was obtained which is coincident with the piezoelectric response of BTO single crystals which confirms a strain mediated MEC. The magnetoelectric ac susceptibility (MEACS) signal as function of temperature under an AC electric field shows abrupt jumps at the BTO phase transition temperatures. The magnetic depth profiles of NP monolayers at various applied DC electric fields were deduced from polarized neutron reflectivity (PNR) results. Fitting of the data shows that the observed differences in reflectivity curves are caused by the changed structural properties of the substrate and layers as a major factor and the altered magnetism of NP monolayers as a minor factor. Also iron oxide NPs self-assembled on BTO films on Nb doped SrTiO$_{3}$ (Nb doped STO) substrates were prepared. The DC electric field vs. magnetization and MEACS results indicate that there is a MEC between NPs and the BTO film. Interface charge and strain transfer are responsible for the MEC effects. Moreover, NPs self assembled into trench-patterned silicon (Si) substrates were prepared to investigate the magnetic anisotropy and collective magnetic behavior. The magnetization vs. magnetic field shows a large shape-induced magnetic anisotropy effect. After the application of a magnetic saturation field along the trenches, electron holography results show that an overall magnetic ordered state exists in the nanoparticle assemblies. In the direction of the trenches, the NPs exhibit a ferromagnetic (FM) -like ordered state and a small memory effect was observed. Whereas large memory effect was observed perpendicular to the trenches. We conclude that the FM ordered state suppresses a superspin glass state of the dipolarly coupled NP moments. This work opens up viable possibilities for energy-efficient electronic devices fabricated by simple self-assembly techniques.
000847883 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000847883 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000847883 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000847883 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000847883 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000847883 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000847883 693__ $$0EXP:(DE-MLZ)SPODI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPODI-20140101$$6EXP:(DE-MLZ)SR8a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSPODI: High resolution powder diffractometer$$fSR8a$$x1
000847883 8564_ $$uhttps://juser.fz-juelich.de/record/847883/files/Schluesseltech_180.pdf$$yOpenAccess
000847883 8564_ $$uhttps://juser.fz-juelich.de/record/847883/files/Schluesseltech_180.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000847883 909CO $$ooai:juser.fz-juelich.de:847883$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000847883 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000847883 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000847883 9141_ $$y2018
000847883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161217$$aForschungszentrum Jülich$$b0$$kFZJ
000847883 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000847883 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000847883 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000847883 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000847883 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000847883 920__ $$lyes
000847883 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000847883 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000847883 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000847883 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x3
000847883 9801_ $$aFullTexts
000847883 980__ $$aphd
000847883 980__ $$aVDB
000847883 980__ $$abook
000847883 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000847883 980__ $$aI:(DE-Juel1)PGI-4-20110106
000847883 980__ $$aI:(DE-82)080009_20140620
000847883 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000847883 980__ $$aUNRESTRICTED
000847883 981__ $$aI:(DE-Juel1)JCNS-2-20110106