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Title: Machine Learning based analysis of heterogeneity in the Parkinson’s disease

Medical imaging is becoming the main framework for studying the anatomy and function of
the human brain. In neuroimaging, multivariate pattern analysis techniques and group
analyses are carried out to reveal differences between populations and to derive highly
sensitive and specific biomarkers of diseases. The driving assumption behind the majority of
the currently existing methods is that a pattern differentiates between two subgroups. This
assumption ignores the ample characteristics of heterogeneity in brain diseases.

Disentangling this heterogeneous nature of Parkinson’s could contribute substantially to our
understanding of this brain disease and may lead to a more accurate diagnosis, prognosis
and eventually to a personalized treatment.

Within the scope of this thesis the possibility of revealing heterogeneity in the Parkinson’s
disease is tackled. Thereby, CHIMERA, a novel probabilistic clustering approach that has
been shown to perform well on the Alzheimer’s disease, was taken into account. In order to
identify certain pathological patterns within the patient population, CHIMERA was applied to
different kinds of preprocessed structural, voxel based Parkinson’s MRI data. The clustering
was carried out with distinct parameters and was afterwards compared to a commonly used
k-means clustering algorithm.

The goal of this thesis was to reveal differences between CHIMERA and the classical
k-means clustering, according to different parameterization and preprocessing. By showing
disparity within the outcome of both algorithms I hope to lay the foundation of a novel
strategy in heterogeneity discovery in the Parkinson’s disease.

The scope of this thesis covered the following aspects:

• Literature review of the state-of-the-art methodology in pattern recognition, used in
neuroimaging.

• Investigation of the potential of the current methods to reveal heterogeneous patterns
within the Parkinson’s disease.

• Application of state-of-the-art multivariate pattern analysis.

• Evaluation of the selected approaches.



Acknowledgements

I would first like to express my gratitude to my supervisor Ph.D. Kaustubh R. Patil for the
useful comments, remarks and engagement throughout the learning process of this thesis.
Mr. Patil consistently allowed this paper to be my own work, but steered me in the right
direction whenever he thought I needed it.

As this work was created in close collaboration with the Research Centre Juelich and espe-
cially with the Institute of Neuroscience and Medicine (INM-7) I would like to thank Prof. Dr.
Simon B. Eickhoff as head of INM7 for making this thesis possible and guiding me whenever
I had a question about my research.

Furthermore I would like to thank PD Dr. Cord Spreckelsen from the Institut für Medizinische
Informatik of the RWTH Aachen University as second supervising professor of this thesis for
his very valuable comments on this work and his great support in making this thesis possible,
despite the sometimes complicated formalities. Moreover I would like to thank the managing
director of the Institut für Medizinische Informatik Prof. Dr. Dr. Klaus Kabino for his involve-
ment in finding a suitable supervisor for this thesis.

Also I would like to thank Prof. Dr. Thomas Berlage from the RWTH Aachen Institute for
Information Systems and head of Life Science Informatics at Fraunhofer Institute for Applied
Information Technology (FIT) for acting as primary supervising professor of this thesis.

Last but definitely not least, I would like to express my very profound gratitude to my parents
for providing me with unfailing support and continuous encouragement throughout my years
of study and through the process of researching and writing this thesis. This accomplishment
would not have been possible without them.

Danke!

Philippe Drießen



CONTENTS 5

Contents

1 Introduction 8

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 State-Of-The-Art Methodologies 11

2.1 Neuroimaging techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Pattern analysis in neuroimaging . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Voxel-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Multivariate pattern analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Clustering of heterogeneous patterns within disease . . . . . . . . . . . . . . . 14

2.3.1 The a priori approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Clustering of the diseased . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Introduction to CHIMERA . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Methodology of clustering heterogeneous disease effects in the Parkinson’s dis-
ease 17

3.1 Parkinson’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Heterogeneity in the Parkinson’s disease . . . . . . . . . . . . . . . . . 18

3.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



CONTENTS 6

3.3.1 Non-Negative Matrix Factorization . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Confound Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Identifying Confounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 CHIMERA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 K-means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Silhouette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.2 Adjusted Rand Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7.1 Multidimensional scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results 38

4.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Non-negative Matrix Factorization . . . . . . . . . . . . . . . . . . . . . 43

4.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Adjusted Rand Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.4 Silhouette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Disease Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



CONTENTS 7

4.4.3 Gender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.4 Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Discussion and Prospects 55

5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Clustering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Limitations and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Appendix 62

6.1 Scree Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Rand Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Silhouettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6 Disease Duration distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6.1 Gender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6.2 Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

List of Figures 70

List of Tables 73

Bibliography 74



8

Chapter 1

Introduction

1.1 Motivation

Several disorders, especially brain diseases, are characterized by heterogeneous symptoms.
Diseases that are specified by a clinical heterogeneous presentation include neurodevelop-
mental and neurodegenerative disorders. For instance in the case of the Alzheimer’s dis-
ease (AD) researchers showed that it is possible to separate the diseased into different sub-
types based upon their distribution of neurofibrillary tangles [1]. In the autism spectrum disor-
der (ASD) neurodevelopmental disorders are characterized by deficits in repetitive behaviors
and social communication [2][3]. For the Parkinson’s- and Schizophrenia disease it is possi-
ble to obtain certain subtypes by separating symptomatology to discrete symptom domains
[4][5][6][7][8][9].

Disentangling heterogeneity within diseases may significantly improve our understanding which
can then be used for a more accurate diagnosis, prognosis and eventually for a personalized
treatment.

To reveal differences among population in neuroimaging, group analyses are performed.
These analyses are carried out to describe for instance disease effects comparing patient
and control populations [10] or seeking to find characteristics of brain development by com-
paring different subjects according to their age [11]. In order to disentangle heterogeneity
among populations a wide range of image types are used throughout studies to carry out
statistical group analysis. These types of images include functional MRI [12], structural MRI
[13][14], and diffusion tensor imaging [15].

A common assumption in the group analysis is that there is a single image pattern that dis-
tinguishes the groups [16]. To put it drastically, most of the commonly used computational
neuroimaging group analyses only assume one single unifying pattern in the pathophysio-
logical process. For instance they presume that there is a specific disease effect which can
be found by comparing a control with a diseased population. However these approaches set
value on ignoring the heterogeneous nature of disease phenotypes and thereby lack crucial
information when modeling the disease effects. Hence, state of the art analyses may fail to
identify the pathological subtypes.

In order to address this problem Aoyan Dong et. al. propose a novel probabilistic clustering
approach, CHIMERA, in 2016 for modeling the pathological process. They demonstrate that
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CHIMERA produces better clustering results compared to two common clustering approaches
and also that it is able to discover two main reproducible Alzheimer’s disease subtypes that
display significant differences in cognitive performance [17].

Utilizing these promising results as foundation, this thesis focused on applying CHIMERA to
Parkinson’s patients, aiming to evaluate clustering results with different kinds of preprocessing
methods and comparing them to a standard clustering approach.

1.2 Objective

Ayong Dong et. al. have already evaluated their probabilistic cluster approach on a synthetic
dementia and an Alzheimer’s disease (AD) data set, demonstrating the superiority in compar-
ison to classical clustering approaches and the discovery of two main and reproducible AD
subtypes.

Based on these encouraging results the main objective of this thesis was to evaluate CHIMERA’s
performance on the Parkinson’s disease in comparison to a classical K-means clustering ap-
proach. The novel method is able to account for possible confounding for example due to
gender, age or the locality where the data has been acquired. Correcting confounding effects
is crucial in order to prevent falsified results that may not reflect the actual relationship any-
more. Thus, as K-means is not able to account for confounders itself, Analysis of Variance [18]
was used to filter out confounding effects before applying K-means to achieve a fairer compar-
ison between these two algorithms. Moreover different kinds of preprocessing methodologies
were applied to reduce the dimensionality. Having data of high dimensionality can be prob-
lematic because computational cost is potentially increased and the learning model might not
generalize well. Hence, here namely Non-Negative Matrix Factorization (NMF) [19] and Prin-
ciple Component Analysis (PCA) [20] were performed to transform the initial data into different
lower dimensional representations.

Although it is hard to analyze clustering results in cases where the ground truth is not known,
this work also investigated the obtained results throughout different data representations and
clustering methods.

As only a few researchers have taken the effort to reveal the inherent heterogeneity in dis-
ease, there is still a wide range of possible directions to investigate. This thesis may only be a
small fraction in the process of disentangling heterogeneity amongst diseases, but it could be
a start in the right direction.
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1.3 Structure of the thesis

This thesis is organized as follows:

In chapter 2 modern state of the art methods are investigated under the desired characteris-
tics of being able to model the pathological process among diseases. Moreover two kinds of
image acquisition techniques are explored.

In chapter 3 the algorithms underlying K-means and CHIMERA are explained in detail. Fur-
thermore different kinds of preprocessing methods are outlined. Besides the technical aspects
the Parkinson’s disease is reviewed regarding its heterogeneous nature.

In chapter 4 the clinical data set which was used for discovering the patients’ subtypes is
presented. Moreover clusterings generated by the different algorithms and granularities (dif-
ferent representation of the initial data in lower dimensionality) are illustrated and compared.
Furthermore a deeper look into the actual clusters is taken. That is picturing the obtained
partitions regarding their reflection of patients’ age, sex, scanning site or disease duration.

Chapter 5 is focusing on discussing and evaluating the results of the previous chapter, outlin-
ing prospects as well as limitations of this work.
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Chapter 2

State-Of-The-Art Methodologies

Medical images and their automated analysis have become the main framework for studying
anatomy and function of the human brain. Typically this is done by either applying Voxel Based
Analysis (VBA) or Multivariant Pattern Analysis (MVPA) techniques.

This chapter focuses on these two methodologies outlining why they have possible disad-
vantages in order to identify pathological subgroups. Also different approaches which were
developed to overcome some of the limitations are considered. Moreover a short introduction
into medical imaging, specifically magnetic resonance imaging is given.

2.1 Neuroimaging techniques

In general neuroimaging can be classified into two broad categories:

1. structural imaging deals with the visualization of the anatomical structure of the hu-
man brain. In the neurological field structural imaging is for example used to localize
pathological structures such as tumors or injuries [21].

2. functional imaging is a technique of detecting changes in the metabolism, blood flow or
change of chemical composition in specific regions of interests. In contrary to structural
imaging the focus lies on revealing physiological activities. For instance functional mag-
netic resonance imaging (fMRI) measures brain activity utilizing the magnetic property
of oxygenated blood [22].

Considering that there are a lot of different techniques applied in the field of neuroimaging and
that most of the underlying physics of these methods would exceed the limited scope of this
thesis by far, only magnetic resonance imaging is briefly explained in the following, aiming to
explain the fundamentals.

2.1.1 Magnetic Resonance Imaging

In order to obtain images from an MRI scanner the patient is positioned within the machine so
that it forms a strong magnetic field around the area of interest. Hydrogen atoms in tissues
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containing water molecules emit a signal that can be processed to form an image of the re-
gion of interest (ROI). As energy from an oscillating magnetic field is applied temporarily at a
specific frequency the excited protons (hydrogen atoms) beam a radio frequency signal which
is received by a coil. The contrast between different kinds of tissues is measured by the rate
at which excited atoms return back to their equilibrium state [23].

The deterioration (relaxation) of a textitnuclear magnetic resonance (NMR) can be analyzed
using two separate methodologies each with different time constraints. The first one accounts
for the loss of signal intensity. To be more precise: it focuses on the time constant associ-
ated with the physical process, responsible for the relaxation vector which is in parallel to the
externally applied magnetic field. This time constraint is called spin-lattice relaxation time T1.
The second methodology is subjected to the broadening of the signal, which is the relaxation
transverse to the static magnetic field named spin-spin relaxation time T2 [24].

T1-weighted images usually have an excellent contrast: fluids appear dark, water-based tis-
sues can be seen as mid-gray and fat based tissues are bright. T1 scans are known as
’anatomy scans’ as they show most clearly the boundaries between two different tissues. Ex-
amples of T1-weighted images are shown in figure 2.1. In T2-weighted images, fluids appear
with the highest intensity. T2 images are often considered as ’pathology’ scans due to their
ability of highlighting abnormal fluid in contrast to darker normal tissue [25]. Figure 2.2 dis-
plays two T2-weighted images.

(a) Axial T1-MR image illustrating healthy anatomy. (b) Coronal T1-MR image illustrating healthy anatomy.

Figure 2.1: Illustration of T1 weighted physiological brain images. Images were obtained from
the clinical data set provided for this work

(a) Axial T2-MR image of a cerebral hematoma (arrows). (b) Axial T2-MR image of a tumoral hemorrhage (arrow) .

Figure 2.2: Illustration of T2 weighted pathological brain images [26].
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2.2 Pattern analysis in neuroimaging

Automated analysis of medical images that are spatially aligned with respect to each other
evolved to be the main framework for studying the anatomy and function of the human brain.
Usually this is employed by either Voxel Based analysis (VBA) or multivariate pattern analysis
(MVPA) [17]. The aligning of the images is crucial as each human brain differs in its anatomy.
In order to be comparable each brain has to be registered to the same normalized template.

In the following sections both MVPA and VBA were investigated and their limitations were
outlined in order to identify pathological patterns.

2.2.1 Voxel-Based Analysis

The increase of resolution of anatomical scans especially of the human brain and the sophis-
tication of processing images put emphasis on characterizing differences of neuroanatomical
shapes throughout human brains.

One simple example for voxel-based analysis is a voxel-vise comparison of the local con-
centration of gray matter (major component of the central nervous system, consisting mostly
of neuronal cells) between two different groups of subjects, e.g. patient and healthy control
groups. A voxel is a volume element or region in a tissue slice (for instance obtained by an
MRI scan), intuitively a voxel can be seen as a three-dimensional version of a pixel. VBA
involves spatial normalization of high-resolution images into the same stereotactic space. Af-
ter normalization the gray matter segments are averaged with their neighbours (smoothing).
After these preprocessing steps, voxel-wise parametric tests are performed comparing the
smoothed gray matter images from the two populations [13] .

To put this more generally, voxel-based analysis techniques are complementing different re-
gions of interest volumetrically and thereby providing a comprehensive assessment of anatom-
ical differences throughout the brain. Usually voxel-based analysis performs mass-univariate
statistical tests for instance on tissue components intending to reveal differences in anatomy
or shape [27][28][29][30][31][32].

Problems that might occur using these methodologies are twofold, on one hand voxel-vise
methods suffer from low statistical power and on the other hand - and more crucial since most
of them are only performing mass-univariate statistical tests - they are more likely to ignore
multivariate relationships in the data. As shown before there is ample evidence of the hetero-
geneous nature of diseases especially in case of dementia including the Parkinson’s disease.

Considering these aspects, voxel-vise methods might lack potential in revealing different sub-
types of disease.
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2.2.2 Multivariate pattern analysis

As voxel-vise methodologies are limited by their univariate statistical tests, multivariate pat-
tern analysis (MVPA) has gained significant attention due to the capability to capture complex
relationships of image signals among brain regions.

Being able to capture multiple relationships in the data these types of methods allow to better
characterize group differences among populations and thus have the potential for improved
diagnosis and targeted treatment [16].

Based on these encouraging outlooks, machine learning approaches for classification or clus-
tering like support vector machines or linear discriminants have been used with increased
success in order to derive individual, sensitive and specific biomarkers of disease [33][34][35]
[36][37].

Although multivariate pattern analysis methods lead to promising potential in order to identify
specific biomarkers of disease, their capability to capture pathological heterogeneous patterns
is limited. Reason for this is that typically both multivariate pattern analysis and voxel-based
analysis share a common assumption in which there is only a single pattern that distinguishes
between two contrasted groups. Putting it drastically, most of the commonly used computa-
tional neuroimaging group analyses only assume a single unifying pattern in the pathophysi-
ological process [16].

2.3 Clustering of heterogeneous patterns within disease

As outlined in subsections 2.2.1 and 2.2.2 both voxel-based analysis and multivariate pattern
analysis lag potential in disentangling the heterogeneous nature of disease. The following
sections are focusing on different ways to tackle this problem.The first two segments are cov-
ering two different classical approaches while the last one is giving an introduction to the novel
clustering method used in this work, CHIMERA.

2.3.1 The a priori approach

In order to reveal the inherent disease heterogeneity the fist class of methods uses a pri-
ori knowledge to predivide the patient population into coherent groups. The splitting criteria
for this subdivision might be based on independent criteria (e.g. clinical) and opts to iden-
tify group-level anatomical or functional diversity by using univariate statistical methodologies
[4][5][6][7][9].

As already mentioned in section 2.2.1 univariate statistical methods ignore multivariate re-
lationships in the data. Furthermore, and more importantly, these kinds of methodologies
highly depend on an a priori disease subtype definition. Obtaining these properly can cause
several problems as for instance cognitive or clinical evaluation might be noisy, non specific or
are in general difficult to obtain [16].
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2.3.2 Clustering of the diseased

The second category of methodologies typically performs multivariate clustering that is usu-
ally applied directly to the patient population.

Although this group of methods has the potential to capture multivariate patterns it is more
likely to put emphasis on clusters that reflect brain anatomies instead of the pathological sub-
types. Due to this possibility there is a risk of obtaining clusters which are derived based on
normal inter-individual variability caused by age, sex or other confounding variables. [9][4][38][39]
In other words clustering applied directly to the diseased population might reflect more con-
found variability instead of highlighting the desired disease heterogeneity.

2.3.3 Introduction to CHIMERA

As outlined in 2.3 and 2.3.2 commonly used state of the art methodologies fail to identify het-
erogeneity within the diseased.

In 2016 Aoyan Dong et. al. proposed a novel probabilistic clustering method called CHIMERA.
In order to capture the pathological process CHIMERA uses multiple regularized transforma-
tion from a normal control population (e.g cognitive stable, normal brain development etc.) to
a patient distribution caused by heterogeneous disease effects.

Considering both populations as point distributions in CHIMERA the pathological subtypes
are identified by matching the normal and the patient distribution while taking covariates such
as age, gender, sex or scanner variability into account. Hereby, each transformation that is
being obtained during the mapping process corresponds to one pathological subtype.

Intuitively CHIMERA is seeking to find the so called disease effect. That is, given an 80-
years old female who is suffering from the Parkinson’s disease would have been an 80-years
old healthy female had she been spared from the disease; the transition between these two
states is considered to be the disease effect [17].

Figure 2.3 shows a visualization of the CHIMERA mapping process:

Figure 2.3: (a) the problem setting is displayed where X denotes the control distribution and
Y the patient population respectively. (b) the model assumption: X is transformed into a
distribution X’ covering the distribution Y by a set of K different transformations [17].
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2.4 Summary

The main framework for studying anatomy and function of the human brain is the automated
analysis of spatially aligned medical images. This is typically performed by either voxel-based
analysis or multivariate pattern analysis. As outlined previously a common assumption behind
both methodologies is that there is a single pattern which distinguishes between contrasted
groups and thus ignores the heterogeneous nature of disease.

Furthermore two different kinds of state of the art methods have been investigated in order to
tackle this problem: the first approach uses predetermined subdivisions of the diseased sam-
ples obtained by a priori knowledge and tried to identify group-level anatomical or functional
differences using univariate statistical methods. Hence, multivariate relationships in the data
are ignored. Moreover these types of methods depend on a priori definition of the subtypes,
which can be noisy or hard to obtain. The second method applies clustering directly to the
patient images. This approach puts emphasis on clusters that are more likely to reflect the
normal inter-individual variability of a human being instead of highlighting disease heterogene-
ity.

Lastly the probabilistic CHIMERA clustering approach has been examined. This approach
models the heterogeneity in diseases as a set of transformations from a control to a patient
population, each transformation corresponding to a pathological subtype. Hence, this clus-
tering approach constitutes a method that is neither depending on a priori knowledge nor
only considering the diseased. Thus CHIMERA introduces a novel strategy to tackle disease
heterogeneity.
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Chapter 3

Methodology of clustering
heterogeneous disease effects in the
Parkinson’s disease

In this chapter the Parkinson’s disease is briefly outlined regarding its symptoms, treatment
and heterogeneity (3.1). Moreover the process of obtaining clusterings from medical image
data that was used for this work is outlined in the pipeline section (3.2). Furthermore the fun-
damentals of the methodologies used in this thesis are investigated.

This includes the clustering algorithms themselves and also pre- and postprocessing ap-
proaches. Specifically, the methods of CHIMERA (3.5.1) and K-means (3.5.2) are explained
in detail. As reduction tools principle component analysis (3.3.2) and non-negative matrix fac-
torization (3.3.1) are considered. Also the correction for possible confounds is presented (3.4).
For postprocessing (3.6) or cluster evaluation the silhouette and the adjusted rand index are
outlined. Finally multidimensional scaling (3.7.1) is introduced as a visualization technique for
high dimensional data.

3.1 Parkinson’s Disease

In this section the Parkinson’s disease is briefly explained. Also the heterogeneity of the
diseased is tackled.

3.1.1 Overview

The Parkinson’s disease (PD) is a progressive multi-system neurodegenerative disease that
mainly strikes patients in their later years of life. It is considered the second most common
neurodegenerative disease worldwide. The prevalence is on the rise along with the change in
population demographics [40].

Patients suffering from PD undergo distinctive neuropathological brain changes. For instance
the formation of abnormal proteinaceous spherical formations, named Lewy bodies, takes
place. The noradrenergic and adrenergic degeneration of dopaminergic nigrostriatal neurons



3.1. PARKINSON’S DISEASE 18

with Lewy bodies is considered to be the primary neuropathological correlate of motor impair-
ment in Parkinson’s disease. Nevertheless there are other kinds of nerve cells which may
show similar damage in their cytoskeleton [41].

The presence of symptoms in the PD are generally categorized into motor and non-motor
symptoms. Motor symptoms for instance include tremor, slowness of movement, rigidity or
postural instability. Non-motor manifestations that can occur are disorders in cognition, mood
or behavior and thought [41].

The aetiology of the Parkinson’s diseased is (probably) multicultural and at the moment there
is no available treatment that can either halt or stop the progression of the disease. Current
treatments are symptomatic and only aim to correct motor disturbances [42].

3.1.2 Heterogeneity in the Parkinson’s disease

Parkinson’s disease is a heterogeneous disease. In other words instead of considering only
one single disease type there can be several manifestations of the condtion derived.

For instance a study focusing on early clinical stages revealed four subtypes of the PD. The
first group contains patients with a younger disease onset. The second class includes dis-
eased with a dominant tremor. Another group is characterized by a non-tremor dominant
subgroup of patients along with significant levels of cognitive impairment and mild depression.
The last subtype identified consists of patients with a rapid disease progression but no cogni-
tive impairment [4].

Roughly speaking Parkinson’s disease’s heterogeneity can be addressed by separating its
symptomatology to discrete symptom domains [4] [9].

Disentangling the heterogeneous nature of disorders is especially important for those with-
out a suitable treatment. Being able to correctly identify a patient’s subtype may significantly
contribute to understanding the aetiology of the disease. Eventually this knowledge can po-
tentially lead to a more accurate diagnose, prognosis and some day maybe even to a person-
alized treatment.
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3.2 Pipeline

In this thesis several steps were taken before obtaining the actual results outlined in chapter
4. This section is explaining each step that was taken along the process. Figure 3.1 shows an
illustration of each of those steps.

Figure 3.1: illustrates the step-wise procedure of this work. The different process steps are
colored as follows: green indicating preprocessing, blue corresponding to the actual clustering
and red reflecting the postprocessing.

Preprocessing:

For this work T1-weighted images were provided for each subject on which voxel based mor-
phometry (VBM) was performed. VBM provides the voxel-wise element estimation of the
local amount or volume of a specific tissue compartment [43]. One can think of a voxel as
of a three-dimensional pixel within an MR-image. Here, the interest lied in investigating the
local distribution of gray matter as research reveals that for instance atrophy in gray matter
can be an indicator for different motor subtypes in the Parkinson’s disease [44]. Gray matter is
a major component of the human brain and comprises most of its neuronal cells. T1-weighted
images are used due to the fact that they represent the anatomy and therefore the gray matter
segments in the best possible fashion. The concept of VBM incorporates different preprocess-
ing steps.

As every individual human brain is different in its shape or size each T1-weighted brain im-
age is spatially aligned. That is registrating each individual brain to a reference brain template.
Moreover after removing any nonbrain parts the tissues are classified (segmentation) into gray
and white matter as well as cerebrospinal fluid based on intensity values, also bias corrections
for non-uniformities is performed. Lastly, the resulting segmentations are modulated by scal-
ing with the amount of volume changes due to spatial registration so that the total amount of
gray matter in the modulated image remains the same as it would be in the original image. An
optional step in VBM is spatial smoothing which is typically applied before statistical analysis.
After smoothing each voxel represents a weighted mean of its own and its neighbors’ values.
One reason is that the data is more normally distributed after smoothing and thus makes it
more suitable for parametric tests. Another reason is that spatial normalization is not always
perfect and small interindividual differences remain. Smoothing accounts for these residual
small differences in local anatomy [13].

Starting from the given spatially normalized T1-weighted images the partial volumes were
segmented according to the computational anatomy toolbox (CAT) [45] and the gray matter
values for each voxel were extracted.
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Instead of extracting the whole brain in this work a mask was used in order to consider only
specific volumetric elements. By using only specific regions of interest (ROI) the number of
extracted voxels was reduced, leading to faster computational time. Moreover, as only regions
of the brain that are known to be involved in the pathological process of the disease were
included, noise due to not contributing brain areas was excluded. The mask used for this
work was well established and yielded good gray matter coverage. It has been provided by
the Institute of Neuroscience and Medicine (INM-7) at Research Centre Juelich.

Figure 3.2 displays a subject’s brain where the mask was overlayed. Eventually only gray
matter values in the white colored areas were extracted.

Figure 3.2: sagital (left), coronal (middle) and axial (right) illustrations of a single subjects
brain. Images are T1-weighted brain MR-images where the mask used in this work was
overlayed.

After overlaying the mask the obtained voxel number was above 100.000. Before applying
any further reduction technique the voxel data was sparsed. Only every second volumetric
element was used. The medical interpretation of doing this is that brain tissues close to each
other will provide the same sort of information. This way, the dimensionality can further be
reduced while still retaining sufficient amount of information. Result of this sparsing process
were 20792 voxels.

After applying the masking and sparsing process to all individual subjects all voxels were
saved into a feature matrix. Equation 3.1 illustrates the composition of the feature matrix Mf

where v denotes the number of extracted voxels and s the number of subjects.

Mf =

gm1,1 . . . gm1,v

· · · . . . · · ·
gms,1 . . . gms,v

 (3.1)

As all images were aligned (normalized) to the same template each column of the matrix
corresponds to a gray matter (gmi,j) value for the jth voxel of the brain and each row is rep-
resenting the ith subject respectively. Intuitively, each row of Mf can be seen as a subject
represented in an v-dimensional feature space. Here, the features are the gray matter values
for a specific voxel.
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For faster computational power the dimensionality was drastically diminished. To accomplish
this, two different kinds of methodologies were used, namely principle component analysis
(3.3.2) and non-negative matrix factorization (3.3.1).

As CHIMERA is able to account for confounds, for a fairer comparison to the K-means al-
gorithm, that by itself does not correct for the possible influences of covariates, the data had
to be adjusted before applying K-means. In this thesis two different kinds of confound removal
strategies were applied as reflected in section 3.4.

Clustering:

After preprocessing all samples the feature matrix (3.1) was used to cluster the diseased
using both CHIMERA and K-means algorithm.

Postprocessing:

After clusters from both methods had been collected, different analyzing steps were taken.
In order to see if clusterings differed between the K-means and the CHIMERA approach three
different techniques were used to tackle this:

1. Visualization: this is reducing the feature space to a two-dimensional space. Samples
and their clusterings can thus be investigated in an intuitive fashion. In this work multi-
dimensional scaling was used [46] as reduction method.

2. Adjusted Rand index: the similarity between two clusterings can be mathematically
expressed by the adjusted Rand index : a value of 1 indicating that each sample is
labeled identically and a value of 0 stating that no single sample label matches [47].

3. Silhouette: is a method to interpret and validate the consistency within clusters of data.
The technique provides a graphical representation of how well each object lies within its
assigned cluster [48].

Besides investigating cluster differences the samples that were assigned to the same clus-
ter were analyzed. Specifically, characteristics like gender, age or scanning location were
considered.

3.3 Dimensionality reduction

In terms of performance, having data of high dimensionality is problematic because it can lead
to high computational cost. Furthermore the trained model might be prone to overfit, which
means that the model will perform well on the training data but poorly on test data.

To tackle this, two kinds of dimensionality reduction techniques were used in this work. In
this chapter both methods are elucidated, namely non-negative matrix factorization (NMF)
and principle component analysis (PCA).
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3.3.1 Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) describes a group of algorithms where a matrix V
is factorized into two significant lower rank matrices W and H . Hereby all three matrices
have the property of being non-negative. The satisfaction of these constraints is what differ-
entiates NMF from the rest of the methodologies (e.g. PCA) and leads to components with
unique properties. Latter is the attribute that is of significant interest in medical imaging. By
multiplying the factorized matrices W and H , V can then be approximated as:

V ≈W ∗H (3.2)

NMF is used in multiple applications with either clustering or dimensionality reduction pur-
poses. For instance in the medical field NMF is used for the analysis of structural neuroimag-
ing data, using the property that the measured anatomic values, such as gray matter are
always positive [49].

NMF has an inherent clustering property, where all columns of input matrix V = (v1, ..., vn)
are clustered. Specifically, given a feature matrix V v,n

samples where v denotes the number of
voxels which were extracted for each sample and n is the number of samples. V v,n

samples can
then be approximated as:

V v,n
samples = W v,k ∗Hk,n (3.3)

where k denotes the number of components or hidden features one would like to obtain. As
a hyperparameter k is chosen by the operator. Each column in Matrix W can be seen as a
hidden feature vector where each cell value defines the rank of each voxel in the feature. The
higher a voxel’s cell value the higher is the contribution to the corresponding feature. Thus W
represents the cluster centroid (i.e. the kth column corresponds to the cluster centroid of the
kth cluster). In the scenario above each cell value of the kth column of H can be interpreted
as the contribution of each subject to the kth feature or cluster. Hence H yields the cluster
indicators, assigning samples with higher impact to the corresponding cluster [50].

In this thesis NMF was mainly used as dimensionality reduction tool. Equation 3.2 can be
written as:

v ≈W ∗ h (3.4)

where v and h are the corresponding columns of v and h. Thus each data vector v is ap-
proximated by a linear combination of the columns of W , weighted by the components of h.
Hence, W can be regarded as containing a basis that is optimized for the linear approximation
of the data in V . As relatively few basis vectors were used to represent significantly more data
vectors, good approximation could only be achieved if the basis vectors discovered a structure
that is latent (hidden features) in the data. In order to achieve a lower rank representation of
V v,n
samples the voxel vectors were projected onto the new basis vectors [51].

As shown in equation 3.5 the reduced feature matrix V n,k
new can be calculated as the product of

V v,n
samples transposed times W , with each row corresponding to a sample and each column to

a latent voxel structure.

V n,k
new = V v,nT

samples ∗W
v,k (3.5)
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Typically in order to obtain the factorization matrices W and H the problem is stated as an
energy minimization problem utilizing the Frobeniusnorm || · ||2F :

min
W,H
||V ∗WH||2F , subjected to W ≥ 0, H ≥ 0 (3.6)

Although there are several methods in which W and H may be found, a popular method due
to its simplicity is the multiplicative update rule: W and H are initialized non negative. Next,
the updated values are computed as follows, where n is the index of iteration.

Hn+1
[i,j] ← Hn

[i,j]

((Wn)TV )[i,j]

((Wn)TWnHn)[i,j]
(3.7)

Wn+1
[i,j] ←Wn

[i,j]

(V (Hn+1)T )[i,j]

(WHn+1(Hn+1)T )[i,j]
(3.8)

Equations 3.7 and 3.8 are repeated until a predefined residual is achieved [52].

As in medical studies the sample size is usually considerably low in contrast to the feature
size (e.g. images), a slightly different version of NMF was performed in this work. The tall
data matrix V was organized in such a way that each data sample (brain voxel) was aligned
column wise (V = [v1, ...vN ], vi ∈ RD, a data sample refers to a vectorized image, also see
3.1). Here, an adopted version of the projective non-negative matrix factorization (PNNMF)
[53] focusing on its orthonormal extension (OPNNMF ) [49] was performed. OPNNMF factor-
izes the data matrix by minimizing the following energy:

min
W
||V −WW TX||2F , subjected to W ≥ 0, W TW = I (3.9)

where H = W TV and I denotes the identity matrix. Hence, the solution could be approxi-
mated by iteratively applying a multiplicative update rule presented in equation 3.10.

W ′ij = Wij
(V V TW )ij

(WW TV V TW )ij
(3.10)

In order to apply the scheme, an appropriate initialization is needed. Therefore, the performed
initialization strategy proposed by Boutsidis and Gallopoulos was employed which generates
sparse initial components that among other benefits improved the sparsity of the final non-
negative decomposition [54].

The implications of estimating the loading coefficients of W are twofold. First, the overlap
between the estimated components is greatly decreased, leading to components exhibiting
high sparsity, which is a significant attribute in settings like brain modeling [55]. Secondly, the
components now provide a grouping of the data variables [49].
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3.3.2 Principle Component Analysis

Principle component analysis (PCA) or also known as Karhunen–Loève transform is a tech-
nique that is commonly used in the fields of dimensionality reduction, feature extraction and
data visualization [56].

In general two different formulations of PCA are available that lead to the same algorithm:
the first definition defines PCA as the mean squared distance between the data points and
their projection [57]. Equivalently, it can be formulated as the orthogonal projection of the data
onto a lower dimensional linear space (principle space), in such a way that the maximum of
variance is preserved [58]. In figure 3.3 the orthogonal projection is pictured.

Figure 3.3: the magenta colored line denotes the lower dimensional principal subspace that
principle component analysis seeks to find. The subspace is chosen in such a way that the
orthogonal projection of the red colored data points onto the new subspace maximizes the
variance of the projected green points. The alternative formulation of PCA that is based on
minimizing the sum-of-squares of the projection errors is illustrated by the blue lines [59].

Due to the scope of this thesis only the maximum variance formulation is covered in the fol-
lowing.

Maximum variance formulation:

A data set of observations xn is considered where n = 1, 2, ..., N and xn is a Euclidean vari-
able xn ∈ RD. The aim is to obtain a lower dimensional space M < D while maximizing the
variance of the projected data points. For simplicity a projection onto a one-dimension space
(M = 1) is considered. The direction in the data is defined as a unit vector (u1 ∈ RD). Next,
each data point xn is projected onto a scalar value uT1 xn where uT1 x̄n yields the mean of this
projection. The sample set mean x̄n is given by

x̄ =
1

N

N∑
n=1

xn (3.11)



3.3. DIMENSIONALITY REDUCTION 25

and the variance of the projected data is given by

1

N

N∑
n=1

{uT1 xn − uT1 x̄}2 = uT1 Su1 (3.12)

where S is defined as the covariance matrix:

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T (3.13)

The variance is maximized under the condition of uT1 u1 = 1 preventing ||u1|| −→ ∞. In order to
enforce this constraint the Lagrange multiplier λ1 is introduced which results in the following
maximization function:

f(u1, λ1, S) = uT1 Su1 + λ1(1− uT1 u1) (3.14)

leading to
δf

δu1
= Su1 − λ1u1

!
= 0⇔ (3.15)

Su1 = λ1u1 (3.16)

As can be seen from equation 3.16 u1 must be an eigenvector of S. By multiplying the left
hand side with uT1 and making use of the unit property the variance is given as

uT1 Su1 = λ1 (3.17)

This variance is maximized when u1 is equal to the eigenvector corresponding to the largest
eigenvalue.

Additional principle components can be defined in an incremental fashion by choosing each
new direction to be that one which maximizes the projected variance amongst all possible
directions with the constraint to be orthogonal to the already existing components [20].
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3.4 Confound Filtering

A confounder is a variable whose presence affects the variables being studied so that the
results are falsified and do not reflect the actual relationship anymore.

In this section the confounding variables used in this work are specified. Furthermore the
method of analysis of variance (ANOVA) is explained regarding how it was utilized in order to
correct for confounds.

3.4.1 Identifying Confounds

In the field of neuro-imaging confounding variables are ubiquitous. Although there are many
influencing covariates in the human brain, in this work the focus lied on correcting three of
these possible factors.

1. Sex: gender studies of the human brain aiming to reveal differences in its connectivity
and anatomy are widely prevalent. For instance research shows that the brain of a
human male tends to have a larger total brain volume compared to a female [60]. As
this work contained male and female subjects correction for possible differences in brain
anatomies due to sex was necessary.

2. Age: the aging of the human brain is a whole research field on its own. A pattern that is
reported by several MRI studies is that there is a consistent age-related volumetric re-
duction of gray matter (GM) in the human neocortex, involving mainly prefrontal regions
as well as the parietal and temporal association cortices [61]. Hence, a correction for
subjects’ age was performed.

3. Scanning site: MRI data is inherently noisy. Effects such as patient positioning and
field of view selection are not constant between scans. Furthermore different scanners
might use different imaging protocols or scanner specific software versions for data
processing [62]. As in this work the clinical data was provided by two hospitals with
different scanners, controlling for these possible effects was crucial.

3.4.2 Analysis of Variance

In order to filter effects which are caused by gender, sex or scanner locality in this work the
statistical method of analysis of variance (ANOVA) [63] was applied.

ANOVA, is a powerful statistical technique that involves partitioning the observed variance
into different components. In this thesis the variance in the gray matter values was partitioned
into components, accounting for different sources of variation (confounds). Once the variance
due to the confounders in the dependent variable was explained, the residuals (the part of the
total variability that still remained unexplained) yielded the confound corrected data.
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3.5 Clustering Methods

Intuitively one can think of a clustering as a grouping of objects where objects within the same
group (cluster) are more similar to each other than to those in other groupings.

In this section the two types of clustering methods applied in this work are explained in more
detail, namely CHIMERA and K-means.

3.5.1 CHIMERA Algorithm

As previously explained in section 2.3.3 CHIMERA models the pathological effect as a set of
transformations from a healthy to a patient distribution.

Method [17]:

Assuming a data set containing M normal control (NC) samples X = {x1, ..., xm} and N
patients samples Y = {y1, ..., yN}. For simplicity it is assumed that the samples can be de-
scribed by two sets of features: a set of D1 - dimensional image features: xvm, y

v
n ∈ RD1 ; and

a set of D2-dimensional covariate (e.g age, sex, scanner) features: xcm, y
c
n ∈ RD2 . Utilizing

the more compact notation leads to: xm = (xvm, x
c
m), yn = (yvn, y

c
n).

Given that there are enough NC points in the data set in order to describe the NC popula-
tion, CHIMERA assumes that the estimated anatomy of patients, had they been spared from
the disease, can be covered by the normal control distribution. Under the assumption that
all the patients can be associated with NCs and that, contrarily, the transformed NC points
cover the entire set of patients, the transformation T is retrieved by matching patient and NC
distributions.

The maximum a posteriori optimization of the model leads to the following energy minimiza-
tion:

ε(X,Y, θ) = −L(X,Y, θ) +R(θ) (3.18)

where θ denotes the parameters of the model, L the log-likelihood of the distribution X and Y
given the parameters θ and R denoting a regularization term for improving stability.

To cover the heterogeneous process a transition T consists of multiple possible transforma-
tions, each representing a pathological direction of image change:

x′m = T (xm) = (T (xvm), xcm) (3.19)

where X ′ = [x′1, ..., x
′
M ] are the transformed NC samples.

The transformation only applies to xvm covariate image features, xcm remaining the same.

The matching of distributions Y and X ′ is found by an adopted version of the coherent point
drift algorithm [64]. Each point x′m is a centroid of a spherical Gaussian cluster where each of
those clusters is considered to have the same variance σ2. Points yn are treated as i.i.d. data
generated by a Gaussian mixture model (GMM) [65] having an equal weight P (x′m) = 1

M for
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each cluster. The similarity between the two distributions can thus be measured by the data
likelihood of this mixture model.

P (X,Y ) =
N∏
n=1

M∑
m=1

P (x′m)P (yn|x′m)

=
N∏
n=1

N∑
m=1

1

M

r
D2
2

(
√

2πσ)D1+D2
∗

exp

{
||yvn − T (xvm)||2 + r||ycn − xcm||2

−2σ2

} (3.20)

Equation 3.20 describes the likelihood of data Y generated by centroids X ′ where the dis-
tance between two points is measured by RBF kernels. The size of covariate features is
chosen to be r times larger than the kernel size of the image feature, where r is determined
by the ratio of total variance of the features. This is to correct for influence due to possible
confounds.

The transformation from one NC point to the patient space can be denoted as

T (xvm) =
K∑
k=1

ζkmTk(x
v
m) (3.21)

where K is the number of pathological directions T1, ...Tk one intends to find.

In the ideal case, if the disease subtypes would be distinct, ζkm should take the value of 1
for the transformation responsible for this specific subtype that effects xm and 0 otherwise.
As different methodologies might correspond to the same point in the normal control space,
CHIMERA uses a soft assignment in which the variable ζkm is relaxed in such a way that it
sums up to 1 for each xm.

In order to map the two populations CHIMERA performs linear transformations. Hence, each
Tk can be described as a set of parameters (Ak, bk) ∈ (RD1xD1 ,RD1 ):

T (xvm) =

K∑
k=1

ζkm(Akx
v
m + bk) (3.22)

where Σkζkm = 1 and ζkm ≥ 0.

Depending on how the matrix Ak is chosen, different kinds of transformation are possible:

1. Full matrices: affine transformation. This is rotating, scaling and translation.

2. Diagonal matrices: only translation and scaling is possible.

3. Identity matrices: only the translation bk is considered.
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Putting it all together, the obtained log-likelihood of the data is given by introducing equation
3.22 into formula 3.20:

L(X,Y,Θ) =

N∏
n=1

log

M∑
m=1

P (x′m)P (yn|x′m)

=

N∏
n=1

log

M∑
m=1

1

M

r
D2
2

(
√

2πσ)D1+D2
∗ exp

{
r||ycn − xcm||2

−2σ2

}
∗

exp

{
||yvn −

∑K
k=1 ζkm(Akx

v
m + bk)||2

−2σ2

} (3.23)

Typically the sample size is quite low in medical settings (especially in image driven stud-
ies) in comparison to the large image scale. In order to prevent ill posed problems CHIMERA
introduces a regularizing or penalty term into the energy function 3.18:

R(Θ) =
λ1

2σ2

∑
k

||bk||22 +
λ2

2σ2

∑
k

||Ak − I||2F (3.24)

To derive an analytical solution the Frobenius norm of Ak − I and the `2 norm of bk is penal-
ized, where I denotes the identity matrix.

Optimization [17]:

In order to optimize the parameters Θ = (A, b, ζ, σ2) of the model, where A = {A1, ..., AK}
and b = {b1, ..., bK} CHIMERA uses an Expectation-Maximization framework [66][65].
The algorithm introduces latent variables z indicating the posterior probability of data point
for each mixture component, qnm = q(zn = x′m|yn). Utilizing this a lower bound of the log-
likelihood is achieved [65].

F0 =
∑
n,m

qnm log

(
P (yn, x

′
m)

qnm

)
(3.25)

The energy ε is minimized in an iterative scheme, calculating alternately the expected value
of q (E-step) with respect to the parameters obtained previously Θ(t−1) and updating Θ(t) by
minimizing the objective function illustrated in equation 3.27 (M-step) in the current iteration t.

Specifically, CHIMERA calculates each step as followed:

E-step: using parameters Θ(t−1) evaluated in previous M-step, equation 3.25 is optimized
at qnm = P (zn = x′m|yn):

qnm =

exp

(
||yvn−Σkζkm(Akx

v
m+bk)||22+r||ycn−xcm||22
−2σ2

)
∑M

i=1 exp

(
||yvn−Σkζki(Akx

v
i +bk)||22+r||ycn−xci ||22
−2σ2

) (3.26)

M-step: the objective function F(Θ) is constructed as an upper bound of the energy function
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ε. Minimizing F(Θ) is equivalent to the minimization of ε [67].

F(Θ) =
1

2σ2

∑
m,n

qnm

(
||yvn −

∑
k

ζkm(Akx
v
m + bk||2 + r||ycn − xcm||22

)
+
N(D1 +D2)

2
log σ2 +

λ1

2σ2

∑
k

||bk||22 +
λ2

2σ2

∑
k

||Ak − I||2F
(3.27)

subjected to:
∑K

k=1 ζkm = 1 for m = 1, ...M, 0 ≤ ζkm ≤ 1

The objective function is not globally convex but jointly convex in each parameter. Hence
CHIMERA performs an iterative procedure by minimizing the objective sequentially with re-
spect to σ2,ζ,A and b. The closed form solution for σ2, A and b is derived by setting the
derivative of the objective function to zero. ζ is optimized using an advanced projected gradi-
ent descent algorithm.

The optimization is terminated when the residual between two iteration steps is small enough.
Furthermore the Expectation Maximization only guarantees a local minimum solution, thus
CHIMERA is re-run multiple times. Depending on the operator the solution that yields the
smallest energy during multiple runs or the most reproducible model can be saved.

CHIMERA initializes the parameters σ2 as mean distance between X and Y , ζ to be uni-
formly distributed for each xm, each Ak to be the identity matrix I, the translation term bk was
sampled from a normal distribution N (0, 1).

Clustering [17]:

The probability for a normal control sample xm to undergo the transformation Tk is considered
in the coefficients ζkm. The likelihood of a patient sample yn to be associated with an NC xm
can be denoted as P (yn|xm). Then, the probability of a given patient yn being generated by
the transformation of Tk is estimated by:

Pk(yn) =
∑
m

P (yn|xm)ζkm (3.28)

As the posteriors qnm are proportional to P (yn|xm) and include a common denominator
(equation 3.26) they can be used to partition the patient samples according to their main
transformation. For each patient yn the label ln corresponds to the largest likelihood:

ln = argmax
k

Pk(yn) = argmax
k

∑
m

qnmζkm (3.29)

As long as the ζkm coefficients are stored, the labeling for a novel data s can be estimated by:

1. computing the likelihood P (s|xm) based on the distances between the novel sample s
and the transformed controls X ′.

2. calculating Pk(s) and thereby obtaining the label ls = argmax
k

Pk(s).
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3.5.2 K-means Algorithm

K-means is a popular used method for clustering. This method aims to partition N observa-
tions into k clusters where each observation is assigned to the nearest cluster center. Intu-
itively, one can think of K-means clusters as comprising a group of data points whose inter-
point distances are small compared to observations outside of the cluster.

Method: [68]

Assuming a given data set {x1, ...xN} consisting ofN observations of a randomD-dimensional
Euclidean variable x. Let µk be the prototype of the kth cluster, this is a D-dimensional vector
which is representing the centers of the corresponding cluster. The cluster belongings are
encoded in a one-hot notation. Therefore, a binary indicator rnk ∈ {0, 1} is introduced, where
k = 1, ..,K describes which of the k clusters is assigned to data point xn. If point xn belongs
to a specific cluster k then rnk = 1 and rni = 0 for i 6= k hold.

The objective function is defined as:

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2 (3.30)

To minimize J , an iterative procedure is used in which each iteration involves two successive
steps. First µk is initialized, afterwards J is alternately minimized with respect to rnk and µnk
taking the partial derivative respectively. It can be noticed that these two stages of updating
correspond to the E-step and M-step of the expectation maximization algorithm.

In order to minimize J , rnk has to be chosen such that:

rnk =

{
1, if k = argminj ||xn − µj ||2

0, otherwise
(3.31)

Which basically is the assignment of the nth data point to the closest cluster center.

Considering the optimization of µk where rnk is held fix (this is setting the partial derivative of
J to zero):

δJ

δµk
= 2

N∑
n=1

rnk(xn − µk)
!

= 0 (3.32)

solving for µk leads to:

µk =

∑
n rnkxn∑
n rnk

(3.33)

The denominator in this expression is equal to the number of points assigned to cluster k, thus
µk is set to be equal to the mean of all data points xn assigned to cluster k. For this reason
this procedure is called K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the cluster means
are repeated alternately until there is no further change in the assignments or until a maximum
number of iterations is exceeded. Because each iteration reduces the value of the objective
function J , convergence of the algorithm is assured.
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As K-means is a heuristic algorithm, there is no guarantee that it converges to a global mini-
mum, and the result may depend on the initial clusters. As the algorithm is usually very fast, it
is common to run it multiple times with different parameters. Figure 3.4 illustrates the cluster-
ing process of K-means:

Figure 3.4: Visualization of K-means:
(a) two-dimensional data in the Euclidean space (green points). Not yet clustered. The initial
centroids or prototypes µ1 and µ2 are denoted by the red and blue crosses respectively.
(b) the initial E-step assigns each data point to the red or the blue cluster according to the
closest centroid. The perpendicular bisector of the two cluster centers, shown by the magenta
denotes the decision boundary.
(c) each cluster center is recomputed (M-step) to be the mean of the points assigned to the
corresponding cluster
(d) - (i) alternately E and M steps until final convergence of K-means is reached [69].
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3.6 Postprocessing

This section tackles the analysis of the clusterings. Here, the interest lied in particular on
characterizing the similarity between the two clustering methods. Hence, the adjusted Rand
index and the silhouette that were applied are described in the following. Furthermore in
order to visualize the high dimensional data in a lower dimensional space, the method of
multidimensional scaling is outlined.

3.6.1 Silhouette

Intuitively one can think of the silhouette as a graphical representation of how well each object
is located within its cluster. In this work, the silhouette was used to identify differences in
similarity or consistency within a clustering method.

Specifically, the silhouette measures how similar an object is regarding its assigned cluster
(cohesion) in comparison to other clusters (separation). Hence, it provides a method for inter-
pretation and validation of a clustering.

The silhouette has a range from minus-one to plus-one where a high positive value indicates
that the considered object fits well into its assigned cluster and poorly into the neighboring
clusters. If the silhouette yields a small or negative value the object might be more similar
to other clusters in comparison to its own. It is important to note that the silhouette defines
similarity based on distances. This is an object with a small distance to its assigned cluster
and a large gap to its neighbor clusters will score a high silhouette value [48]. Thus one can
assume high silhouettes for objects in clusters produced by K-means as its algorithm is de-
signed to assign observations to the closest cluster centers. As CHIMERA uses a different
cluster technique different silhouettes were expected.

Method [48]:

Given an object o where o ∈ A where A is the cluster it is assigned to. The silhouette is
defined as:

s(o) =

{
0, if a(o) = b(o) = 0

b(o)−a(o)
max{a(o),b(o)} , otherwise

(3.34)

where:

• a(o) = average dissimilarity of o to all other objects of A. In figure 3.5 this is the average
length of all lines within cluster A. Mathematically expressed a(o) can be denoted as:

a(o) = dist(A, o) =
1

nA

∑
a∈A

dist(a, o) (3.35)

where dist(i, j) defines the distance between i and j and na is the number of elements
in cluster A.

• Let d(o,D) be the average dissimilarity of objects o to all objects of other groupings for
which D 6= A holds. Specifically this is the average length of all lines going from o to C
or B in figure 3.5. After computing d(o,D) for all clusters the smallest value is selected
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and denoted by:

b(o) = min
D 6=A

d(o,D)

= min
D 6=A

(
1

nD

∑
d∈D

dist(d, o)

) (3.36)

where nD denotes the number of objects in the clustering. The nearest cluster to A is
then called the neighboring cluster.

The average over all silhouettes of a cluster is called the silhouette coefficient and is defined
as:

1

nA

∑
o∈A

s(o) (3.37)

The silhouette coefficient can either be calculated for a specific cluster or for the whole set
of clusters where nA is the number of all silhouettes in cluster A or the whole data set A
respectively. Hence, the silhouette coefficient provides a measure of all silhouettes in a cluster
or data set.

Figure 3.5: Illustration of elements involved in the computation of the silhouette s(o). A, B
and C are clusters, o is the observation that is considered.

3.6.2 Adjusted Rand Index

The Rand index [70] measures how similar two clusterings are to each other. The adjusted
Rand index is extending the classical Rand index by correcting for chance in the sense that
the index would take on some constant value (e.g. zero) under an appropriate null model of
how the partitions have been chosen [47].

Assuming a set of partitions of n elements E = {e1, ...en} and two partitions of E, X =
{x1, ...xr} and Y = {y1, ...ys} that group the elements of E in r and s clusters respectively.
The Rand index R is then given by:

R =
a+ b(
n
2

) (3.38)

where
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• a: denotes the number of pairs of elements in E that are in the same subset in X and in
the same subset in Y.

• b: defines the number of pairs of elements in E that are in different subsets in X and in
different subsets in Y.

The Rand index has a value in the range of 0 to 1. A value of 0 indicating that the two data
clusterings do not agree on any pair of points and a value of 1 corresponding to identical
groupings [70][47].

In contrary the adjusted Rand index can take values from -1 to +1. Where positive values
close to one indicates that clusters are quite similar (a value of one implies that the cluster-
ings are identical). A value close to zero indicates the two clustering assignments match in a
similar fashion as to be expected if they were both randomly generated. Negative values indi-
cate that there is less agreement between clusterings than expected from random partitions
[70][47].

Method [70][47]:

Assuming a set ofM of n elements and two clusteringsX = {X1, ...Xm} and Y = {Y1, ...Ys}.
The contingency table denoting the overlap between Y and X is then given by:

X/Y Y1 · · · Ys
∑

X1 n11 · · · n1s x1
...

...
. . . · · ·

...
Xm nm1 · · · nms xm∑

y1 · · · ys

Table 3.1: contingency table for clusterings X and Y

where each entry nij yields the number of objects for which nij = |Xi
⋃
Yj | holds.

The adjusted Rand index can then be defined as:

ARI =
Index− Expected Index

Maximum Index− Expected Index

=

∑
ij

(nij

2

)
−
[(∑

i

(
xi
2

)∑
j

(yj
2

))
/
(
n
2

)]
1
2

[∑
i

(
xi
2

)
+
∑

j

(yj
2

)]
−
[(∑

i

(
xi
2

)∑
j

(yj
2

))
/
(
n
2

)]
(3.39)

where nij , xi and bi are collected from the contingency table 3.1.
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3.7 Visualization

Visualizing high dimensional features in typically 2-dimensional space can give an intuition
about the data. For instance points that strongly separate themselves from the other obser-
vation might be outliers that potentially disturb the data. In this work visualization was mainly
used to illustrate subjects according to their brain voxels in 2-dimensional space.

Hence in this section multidimensional scaling is introduced which served as visualization
technique.

3.7.1 Multidimensional scaling

Multidimensional scaling (MDS) is a technique for visualizing similarities of individual objects
in a data set. An MDS algorithm’s target is to reduce each object down to an N -dimensional
space in such a way that the distances between objects are preserved as best as possible.
Hereby, each object is represented in each of the N -dimensions.

Method [46]:

Given a distance matrix ∆ of K objects:

∆ =

 δ1,1 · · · δ1,K
...

. . .
...

δK,1 · · · δK,K

 (3.40)

where δi,j denotes the distance between the ith and the jth object.

MDS aims to findD vectors x1, ...xD ∈ RN such that the distances δi,j are preserved. Hence,
for all i, j ∈ 1, ..., D, ||xi − xj || ≈ δi,j holds where || · || denotes a vector norm (e.g. classical
MDS uses the Euclidean distance).

In order to find the embedding of the D objects into the RN space multidimensional scal-
ing applies different approaches to determine the vectors xi. Typically MDS is formulated
as an optimization problem, the loss function in this context is called stress, which is usually
minimized by performing stress majorization.

Given the stress function S:

S(X) =
∑

i<j≤N
wi,j(δi,j(X)− σi,j)2 (3.41)

where wi,j yields a weighting factor for the measurements between two object pairs i and j,
δi,j denoting the distance matrix between the ith and jth objects and σi,j representing the
ideal distances between two points (this is the separation in their original space).

To reduce a given set of N M -dimensional data items to a configuration X ∈ Rr of K points
where r << M equation. This minimization will lead to a configuration of X in which objects
that were close together in their original space will correspond to points that are close together
in the lower space.
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There are various approaches to minimize S(X). Here, the Kruskal-method [71] that recom-
mends an iterative steepest decent approach was performed.

3.8 Summary

In the beginning of this chapter the Parkinson’s disease was briefly explained (section 3.1)
showing that there is no available treatment that can stop the progression of the disease.
Moreover it was outlined that Parkinson’s is a heterogeneous disease and why it can be ben-
eficial to disentangle this heterogeneous nature.

Secondly the pipeline of this thesis was introduced (section 3.2). Showing each step from
the raw image data to the obtained clusterings. Based on this step wise procedure all neces-
sary methodologies were described. Specifically, dimensionality reduction techniques (3.3),
the two clustering methods (3.5), CHIMERA and K-means and ANOVA as a method that al-
lows to correct for possible confounds influence (3.4) were explained. Lastly different kinds of
postprocessing methods (3.6) were outlined: the silhouette as a technique to get an intuition
of how well an object is assigned to its cluster and the adjusted Rand index as a method to
compare two clusterings. Furthermore multidimensional scaling was described as a tool for
visualizing high dimensional feature spaces in a lower dimensional space.
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Chapter 4

Results

This chapter focuses on presenting the results obtained by applying both CHIMERA and K-
means on different granularities of preprocessed data.

At first the data set provided for this work is presented. Afterwards, the application of con-
found filtering and the two different dimensionality reduction techniques are outlined.

The main part of this chapter is based on the obtained clusterings. Therefore the parame-
ters that were utalized when performing each clustering method are briefly presented. Next,
the outcome of both methodologies is visualized in 2D-space followed up by a similarity check,
the adjusted Rand index. Moreover the silhouette of each clustering will be illustrated.

Lastly the collected clusters are presented. Specifically, the groupings are reviewed for pat-
terns in age, gender, scanner protocol and disease duration.

4.1 The Data

The clinical data set which was investigated was acquired at Universitätsklinikum Aachen
(UKA) and Universitätsklinikum Düsseldorf (UKD).

Both studies were ethically approved from the ethics board of Heinrich Heine and RWTH-
Aachen University. Furthermore the usage of this data for scientific purposes was granted by
both institutions.

Originally the combined data set contained 192 subjects, after removing outliers it reduced
down to 180 samples. For instance subjects with an age below 35 were excluded.

The data comprises 91 Parkinson’s patients and 89 healthy controls. Overall there were 98
males and 82 females. 102 samples were provided by UKD and 78 from UKA. Figure 4.1
illustrates the grouping of control and patients as well as the sex distribution regarding the two
scanning sites.

In figure 4.2 boxplots for age and disease duration (that is the time patients suffer from the
Parkinson’s disease) are displayed. Regarding age the partitions reflect healthy controls and
patients, the disease duration was partitioned based on the scanning site.
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(a) Population distribution for both scanning sites (b) Gender distribution regarding the scanning site

Figure 4.1: Scanning site comparison of subjects

(a) Boxplot of subjects age for the diseased and healthy
population

(b) Disease duration of patients regarding their scanning
site.

Figure 4.2: Boxplots: Age and disease duration. The p-value corresponds to a two-sample
t-test of the respective distributions.

As one can observe from figure 4.1 patients were significantly older (p < 0.05) than the control
population which is not optimal as distributions that are equally distributed are preferred.

Even more diverse (p « 0.5) was the distribution of patients suffering from the disease il-
lustrated in figure 4.2b: Parkinson’s patients scanned at the RWTH Aachen Uniklinik were
suffering from the Parkinson’s disease significantly longer than patients from the Düsseldorf
Uniklinik which had more or less been recently diagnosed.

In this work T1-weighted MRI-scans were used to try to identify the gray matter distribution
for each individual subject. Based on these, groupings that reflected different subytpes of the
disease (also see preprocessing in section 3.2) were identified. Specifically, the features that
were the basis for the clustering methods were voxel wise measured gray matter values. In
other words the goal was to find patterns based on volumetric differences or changes in the
human brain.

Research shows that gray matter can be a subtype disease indicator. For instance Rosenberg-
Katz et. al. [44] showcase that in the tremor dominant (TD) subtype and the postural instability
gait difficulty (PIGD) subtype, the characteristics in gray matter density of the human brain pro-
vide an indication for different manifestations (subtypes) of the Parkinson’s disease.

After masking the T1-weighted gray matter MRI-scans (preprocessing in section 3.2) the fea-
ture matrix M s,v

f (3.1) contained 20792 voxels (v) extracted from 180 patients (s.)

Figure 4.3 gives an intuition of the mean and variance per voxel:
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(a) Gray matter mean of every subjects evaluated at each voxel

(b) Gray matter variance value of every subject evaluated at each voxel

Figure 4.3: Gray matter mean and variance of every subject per voxel

As visualized above the variance and the mean between the normal control and patient pop-
ulation seemed to be quite similar. Except two volumetric elements that had conspicuously
more variance (but stable means) there were no outliers detected. In order to preserve more
information those two voxels were kept.

Figure 4.4 illustrates the samples (according to their voxel data) in a 2D-feature space which
was obtained by applying Multidimensional scaling (3.7.1) to the original feature-space (20792-
dimensions):
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Figure 4.4: 180 samples in the 2D feature space. Each sample in the original space was
represented by 20792 (number of voxels) grey matter values. Here, every sample is charac-
terized by two values that were obtained by multidimensional scaling. Points close together in
the original space are also close in the 2D space.

4.2 Preprocessing

This chapter outlines the different schemes that were used to filter for confound influence.
Furthermore a closer look into the dimensional reduction methods is taken. Here the focus
lied on how to choose a comparable number of representations of the data for both reduction
methods while still preserving sufficient information to explaining the uncompressed data.

4.2.1 Analysis of Variance

Accounting for confounding (section 3.4) is crucial when searching for patterns which might
be disguised by noise due to covariates.

K-means is not able to account for confounds, while CHIMERA is correcting for possible con-
founds in a way that distances of covariate features are larger than the imaging features.

For a fairer comparison the data accessed by K-means was manually filtered for confounds,
specifically for age, sex and scanner location (CHIMERA accounts for the same confounders).
Therefore an analysis of variance (ANOVA) was used in three different ways:

1. ANOVA based on the total population, that is patients and controls combined.

As in this work the interest lied on clustering the disease into different subtypes, K-
means had only knowledge about the patient population. While regressing on both, dis-
eased and healthy population, the idea was to create more similarity to the CHIMERA
approach by preserving some of the healthy controls’ knowledge.

Specifically, ANOVA was performed on the complete feature matrix (3.1) leading to a
confound corrected representation of the samples. Afterwards K-means was applied to
the resulting matrix where all healthy controls were excluded.
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2. ANOVA based on the patient population only.

This is applying first the ANOVA and then K-means to the feature matrix (3.1) where
all healthy controls were excluded beforehand.

3. No confound correction at all.

That is applying K-means directly to feature matrix (3.1) that had all healthy subjects
removed. As already presented in section 3.4, not correcting for possible confounds
might lead to falsified results. Here, the interest was to compare all three adjusting
methods regarding their similarity to the CHIMERA approach.

4.2.2 Principal Component Analysis

Principle Component Analysis aims to persevere as much variance of the data as possible.
Each eigenvalue of the normalized covariance matrix is representing the amount of variance
retained from the original data. The percentage of variance that is retained in the ith compo-
nent is given by:

pi =
ei∑
i ei

(4.1)

where ei denotes the ith eigenvalue.

There are dozens of methods of determining how many principle components (granularities
of the data) to select in order to represent the original data as best as possible. One would
like to obtain the fewest number of principle components that persevere most of the variance
of the original data.

The three most common selection methods (rules of thumb) are:

1. Kaisers Rule: keeping only components with eigenvalues for which ei ≥ 1 hold.

2. Scree Plot : this is plotting the number of eigenvalues in descending order (biggest
to smallest). In some cases the obtained figure illustrates an elbow structure. The
components that are selected are the ones prior to the elbow (see 6.1 for a screen plot).

3. Proportion of variance: selecting the components in such a way that at least two-third
of the variance is explained.

In this work the selected components were chosen based on the proportion of variance re-
tained. Figure 4.5 displays the variance retained of the feature matrix (3.1) for each component
(in descending order):
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Figure 4.5: Variance of the feature matrix retained for each principal component

In this work multiple components had been chosen to compare their effects on the clustering.
To be more precise, 162 components (95% of variance retained) were selected as a bench-
mark of orientation. In the end five different sets of components were used, two above and
two below the threshold of 162, specifically: 140, 150, 162, 170, 179-components.

4.2.3 Non-negative Matrix Factorization

Non-negative Matrix Factorization requires an a priori definition of the maximum number of
components (that is the number of columns in the W - and the number of rows in the H ma-
trix respectively) one likes to obtain. Hence, for non-negative Matrix Factorization (NMF) it
is not possible to extract the retained variance for each component as easily as in principal
component analysis (PCA) (for instance a plot like for figure 4.5 cannot be obtained as the
components are chosen a priori to construct the two factorization matrices).

Thus, in order to be comparable to PCA, a range of granularities was chosen so that they
could be compared to multiple principal components.

The selected number of components for NMF were 140, 150, 160, 170 and 180. The reason
for choosing specifically these components was based on the assumption that NMF would
need at least the same number of components as PCA to preserve the same amount of vari-
ance, as NMF is limited by its constraints to only positive values, only additive, not subtractive,
combinations are allowed.

Specifically, for each component the transposed feature matrix MT
f was partitioned into two

lower rank matrices W and H . The dimensional reduced representation of the data was then
obtained by multiplying the feature matrix times the obtained W matrix for each individual
component.

Figure 4.6 illustrates the contribution of each voxel to the kth component for the 140 and
180 component representation:
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(a) contribution of each voxel to the 180-component NMF representation

(b) contribution of each voxel to the 140-component NMF representation

Figure 4.6: Contribution of each voxel to the components in different NMF granularities
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4.3 Clustering

In this chapter the clusterings obtained by CHIMERA and K-means are visualized and com-
pared.

First the parameters used to perform both methods are outlined, followed up by a 2D-visualization
as well as similarity and consistency tests. Specifically, the adjusted Rand index between
CHIMERA groupings and the three different confound adjusted K-means clusters is visual-
ized. The consistency is addressed by the silhouette for different clusterings.

4.3.1 Parameters

CHIMERA:

CHIMERA comes with several hyper parameters which were originally [17] determined based
on cross-validation [72]. Here, due to the limit of the scope, most specifications were chosen
by default.

CHIMERA was performed with the following parameters:

• the number of clusters was set to 2. This is the minimal amount of clusters that can be
obtained. Although there might be several more subtypes one can find that the minimal
number of cluster was a reasonable point to start from.

• covariates (confounding factors) that were introduced to CHIMERA were:
age, sex and scanner location.

• as stopping criterion a residual value of 0.001 was set (default).

• for λ1 a value of 10 and for λ2 a value of 100 was chosen (default).

• as transformation matrix a full matrix was set (affine matrix, also default).

• the maximum number of iterations was set to 10000 (default 1000) to ensure a minimal
solution.

• number of runs with different initialization (replicates) was set to 50 (default).

• the data was normalized to be in a range of zero to one (default).

• the result that was saved during multiple re-initializations was the one which yielded the
minimal energy (default).

K-means:

K-means was executed with 150 replicates (this is the number of times to repeat the clus-
tering, each with a new set of initial centroids), as it depends on its initialization and hence
might only find a local minimum. Furthermore the number of maximum iterations was set to
10000 to ensure a minimal solution. The parameter k was set to 2 in order to be comparable
to CHIMERA .
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4.3.2 Visualization

Figure 4.7 and 4.8 are illustrating the clusterings of multiple representations of the original
data. The groupings for K-means were based on data that was corrected for possible con-
founds with the two different schemes (3.4).

Note that for better comparison the feature spaces visualized here (for both 4.7 and 4.8) are
corresponding to raw 20792 space which was reduced to 2D using multidimensional scaling.
The actual feature space depends on both methodology and confound adjustment.

(a) Clusterings for different PCA components. The top row refers to K-means
clusterings, the bottom to CHIMERA groupings.

(b) Clusterings for different NMF components. The top row refers to K-means
clusterings, the bottom to CHIMERA groupings.

Figure 4.7: 2D visualization of CHIMERA and K-means clusterings based on different data
representations. For K-means possible confounds were corrected according to the patient
population. The number of components for each reduction method is denoted in (·).
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(a) Clusterings for different PCA components. The top row refers to K-means
clusterings, the bottom to CHIMERA groupings.

(b) Clusterings for different NMF components. The top row refers to K-means
clusterings, the bottom to CHIMERA groupings.

Figure 4.8: 2D visualization of CHIMERA and K-means clusterings based different data rep-
resentations. For K-means possible confounds were corrected based on the total population.
The number of components for each reduction method is denoted in (·).

Clusterings obtained where no a priori confound removal was performed are visualized in
appendix 6.2.
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4.3.3 Adjusted Rand Index

Illustration 6.3 displays the adjusted Rand index comparing CHIMERA clustering to groupings
of K-means that are adjusted for possible confounds in different schemes. Both clusterings
were applied to a lower representation of the data using NMF and PCA respectively as reduc-
tion method.

(a) ARI for multiple principal components, comparing K-means with CHIMERA

(b) ARI for multiple NMF components, comparing K-means with CHIMERA

Figure 4.9: Adjusted Rand index between CHIMERA and different schemes of K-means. The
number of components is denoted in (·).

In appendix 6.3 the classical Rand index is illustrated.
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Table 4.1 illustrates the consistency (similarity) of CHIMERA clusters within a reduction method
and throughout the respective approach.

Each cell represents an adjusted Rand index value. Blue and red colored cells denote cluster
similarity within the given reduction method, magenta cells yielding the similarity comparing
both reduction techniques against each other.

(140) NMF (150) NMF (160) NMF (170) NMF (180) NMF (140) PCA (150) PCA (162)PCA (170) PCA (179) PCA
(140) NMF 1
(150) NMF 0.871 1
(160) NMF 0.871 1 1
(170) NMF 0.829 0.955 0.955 1
(180) NMF 0.871 1 1 0.955 1
(140) PCA 0.413 0.331 0.331 0.305 0.331 1
(150) PCA 0.413 0.331 0.331 0.305 0.331 1 1
(162) PCA 0.413 0.331 0.331 0.305 0.331 1 1 1
(170) PCA 0.413 0.331 0.331 0.305 0.331 1 1 1 1
(179) PCA 0.413 0.331 0.331 0.305 0.331 1 1 1 1 1

Table 4.1: Cluster consistency in CHIMERA clusters. The number of components for each
reduction method is denoted in (·).

Table 4.2 and 4.3 are illustrating the consistency of K-means clusterings with different con-
found correcting schemes for both NMF and PCA reduced data:

(140) NMF (150) NMF (160) NMF (170) NMF (180) NMF (140) PCA (150) PCA (162)PCA (170) PCA (179) PCA
(140) NMF 1
(150) NMF 1 1
(160) NMF 1 1 1
(170) NMF 1 1 1 1
(180) NMF 1 1 1 1 1
(140) PCA 0.790 0.790 0.790 0.790 0.790 1
(150) PCA 0.639 0.639 0.639 0.639 0.639 0.675 1
(162) PCA 0.750 0.750 0.750 0.750 0.750 0.570 0.639 1
(170) PCA 0.712 0.712 0.712 0.712 0.712 0.750 0.675 0.570 1
(179) PCA 0.790 0.790 0.790 0.790 0.790 0.675 0.537 0.712 0.750 1

Table 4.2: Cluster consistency in K-means clusterings, possible confounds were corrected
based on patients. The number of components for each reduction method is denoted in (·).

(140) NMF (150) NMF (160) NMF (170) NMF (180) NMF (140) PCA (150) PCA (162)PCA (170) PCA (179) PCA
(140) NMF 1
(150) NMF 1 1
(160) NMF 1 1 1
(170) NMF 1 1 1 1
(180) NMF 1 1 1 1 1
(140) PCA 0.830 0.830 0.830 0.830 0.830 1
(150) PCA 0.870 0.870 0.870 0.870 0.870 0.717 1
(162) PCA 0.829 0.829 0.829 0.829 0.829 0.750 0.789 1
(170) PCA 0.639 0.693 0.639 0.639 0.639 0.639 0.750 0.639 1
(179) PCA 0.789 0.789 0.789 0.789 0.789 0.789 0.829 0.789 0.750 1

Table 4.3: Cluster consistency in K-means clusterings, possible confounds were corrected
based on patients and healthy controls. The number of components for each reduction method
is denoted in (·).
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4.3.4 Silhouette

Figure 4.10 displays the silhouette for two different components (here the widest difference
in components are chosen for each method) of NMF for both the CHIMERA clusters and the
K-means groupings. Correction for possible confounds was based on the patient population.
Figure 4.11 illustrates the silhouettes for PCA respectively. Silhouettes for data adjusted for
possible confounds based on the total population are provided in appendix 6.4.

(a) Silhouette CHIMERA, NMF 180-components (b) Silhouette K-means, NMF 180-components

(c) Silhouette CHIMERA, NMF 140-components (d) Silhouette K-means, NMF 140-components

Figure 4.10: Silhouette for CHIMERA and K-means for two different NMF granularities. For
K-means possible confounds were corrected based on the patients distribution, s denotes the
silhouette coefficient.

(a) Silhouette CHIMERA, PCA 179-components (b) Silhouette K-means, PCA 179-components

(c) Silhouette CHIMERA, PCA 140-components (d) Silhouette K-means, PCA 140-components

Figure 4.11: Silhouette for CHIMERA and K-means for two different NMF granularities. For
K-means possible confounds were corrected based on the patients and healthy distribution, s
denotes the silhouette coefficient.



4.4. CLUSTER ANALYSIS 51

4.4 Cluster Analysis

This section will focus on the samples within a cluster. Specifically, sex, age, scanner protocol
and disease duration are investigated.

Note that due to the scope of this work in the following chapter only K-means clusterings
that were corrected for possible confounds based on the patient samples are illustrated. See
appendix 6 for illustrations that were corrected based on patients and healthy controls. Sec-
tions are named respectively.

4.4.1 Age

(a) Boxplot regarding age for different PCA components

(b) Boxplot regarding age for different NMF components

Figure 4.12: Boxplots of the age distribution in clusterings (C1,C2) obtained from both,
CHIMERA and K-means for multiple NMF and PCA components. P-value was obtained by a
two sample t-test. Correction for possible confounds was based on the patient samples. The
number of components is denoted in (·).
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4.4.2 Disease Duration

(a) Boxplot regarding patients disease duration for different PCA components

(b) Boxplot regarding patients disease duration for different NMF components

Figure 4.13: Illustration of the disease duration of patients in clusterings (C1,C2) obtained
from both CHIMERA and K-means for multiple NMF and PCA components. The correction
for possible confound was based on the patient population. P-values were calculated by
performing a two sampled t-test for the specific clustering. The number of components is
denoted in (·).



4.4. CLUSTER ANALYSIS 53

4.4.3 Gender

(a) Female distribution for CHIMERA clusters based on PCA
reduced data

(b) Male distribution for CHIMERA clusters based on PCA re-
duced data

(c) Female distribution for K-means clusters based on PCA
reduced data

(d) Male distribution for K-means clusters based on PCA re-
duced data

(e) Female distribution for CHIMERA clusters based on NMF
reduced data

(f) Male distribution for CHIMERA clusters based on NMF re-
duced data

(g) Female distribution for K-means clusters based on NMF
reduced data

(h) Male distribution for K-means clusters based on NMF re-
duced data

Figure 4.14: Illustration of the percentage of males and females in clusters C1 and C2 ob-
tained from both CHIMERA and K-means based on multiple NMF and PCA components.
Correction for possible confounds was based on patient samples. The number of components
is denoted in (·).
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4.4.4 Scanner

(a) UKD distribution for CHIMERA clusters based on PCA re-
duced data

(b) UKA distribution for CHIMERA clusters based on PCA re-
duced data

(c) UKD distribution for K-means clusters based on PCA re-
duced data

(d) UKA distributionfor K-means clusters based on PCA re-
duced data

(e) UKD distribution for CHIMERA clusters based on NMF re-
duced data

(f) UKA distribution for CHIMERA clusters based on NMF re-
duced data

(g) UKD distribution for K-means clusters based on NMF re-
duced data

(h) UKA distribution for K-means clusters based on NMF re-
duced data

Figure 4.15: Illustration of the percentage of patients scanned at Universitätsklinikum Aachen
(UKA) and Universitätsklinikum Düsseldorf (UKD) in clusters C1 and C2 obtained from both
CHIMERA and K-means for multiple NMF and PCA components. Correction for possible
confounds were based on patient samples. The number of components is denoted in (·).



55

Chapter 5

Discussion and Prospects

This section is evaluating the results gathered in chapter 4. Firstly the data set provided for
this work is examined (5.1.1). Secondly the results obtained by both clustering methods are
discussed. The latter is divided into the comparison of the clusters based on their similarity in
the feature space (5.1.2) and the characteristic of samples that they comprise (5.1.3). Lastly
the limitations of this work are reviewed and possible outlooks outlined (5.2).

5.1 Evaluation

This section discusses the outcome of chapter 4.

5.1.1 Data Set

Before directly considering the clustering results a closer look at the clinical data set is re-
quired.

First of all the data set was considerably small compared to other data driven approaches
as for instance the image classification of cars where (image) data is ubiquitous. The fact that
data is rare in medical settings is a significant limitation as more data usually provides more
information and thus better results.

Secondly, equally distributed data is preferred. Here, the data set consisted of a larger number
of male (98) than female (82) subjects as illustrated in figure 4.1b. Furthermore study partici-
pants were scanned at multiple sites where more subjects were studied in Uniklinik Düsseldorf
(UKD) compared to Uniklinikum Aachen (UKA), figure 4.1a. As figure 4.2 illustrates there was
a significant difference in age (p < 0.05) and disease duration (p « 0.05) regarding the healthy
and the patient distribution as well as the scanning site. In other words patients were sig-
nificant older than the healthy controls and diseased who were scanned at UKD were more
recently diagnosed with Parkinson’s whereas patients studied at UKA were suffering signifi-
cantly longer from the disease.

As outlined above, the data set was not optimal which is not unusual in clinical settings as
data is rare.
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Looking at figure 4.5 one can notice that relatively many components were needed to re-
tain a high amount of variance. Here, the first 162 components retained 95% of the variance
of the original (not reduced) data. The maximum number of components one can reduce to is
bounded by the sample size (180 subjects). Usually, when applying PCA the first few compo-
nents are preserving the most variance of the data and thus comprising the directions (trend
or patterns) in the data. Hence, having more or less an equal distribution of variance through-
out all components, emphasized that there was no significant trend in the data. In other words
every human brain seemed to be unique.

The diversity of each individual subject was also reflected by components of NMF. Looking
at figure 4.6 it becomes clear that there was only very small contribution of voxels to an NMF
component (indicated by the dark blue).

5.1.2 Clustering Analysis

One of the objectives of this thesis was to find out whether CHIMERA and K-means clusters
differ and if so how significant this discrepancy is.

Considering the two 2D-visualization of the two different cluster approaches for both confound
filtering techniques (figure 4.7 and figure 4.8) one can easily observe that the clusterings ob-
tained by CHIMERA differed from those found by K-means.

The significance of this difference is illustrated in barplots 6.3. For both reduction methodolo-
gies as well as for both confound filtering techniques the adjusted Rand Index did not exceed
a value of 0.05. Considering that an adjusted Rand index value of 1 yields identical cluster-
ings whereas a value of near to 0 indicates that the two clustering assignments match about
as might be expected if they were both randomly generated, the obtained results proofed that
there are significant differences between the two clustering methods. K-means cluster based
on data that was not adjusted for possible covariate interference sometimes even leads to
more similar results. Moreover the diversity between CHIMERA and K-means was consistent
throughout reduction and confound correction methods.

Investigating the consistency between different components of NMF and PCA it becomes
obvious that CHIMERA was sensitive to the reduction methods. In other words clusterings
varied depending on which reduction method was performed. Table 4.1 comprises different
adjusted Rand index values obtained comparing different clusterings. Notably, values among
reduction methods were high which indicates high (or for PCA complete) similarity between
the clusterings. That is the blue marked cells for NMF and the red marked cells for PCA
reduction. Although there was consistency among methods, there was a difference when
comparing clusters of both methodologies. This is indicated by the magenta cells that were
comparing clusters obtained from different representations of the data (components) against
the two reduction methods, leading to significant lower values and thus poor similarity.

Considering the same structured table for K-means clustering where either possible con-
founds were corrected based on the patient samples (table 4.2) or filtered by combining the
patients with healthy controls (table 4.3), it can be seen that clusters were similar within reduc-
tion techniques (blue and red cells) and also comparing the methods (magenta cells) lead to



5.1. EVALUATION 57

akin results for both confound correction schemes. In other words in comparison to CHIMERA,
K-means was not sensitive to either of the reduction methods performed in this work.

By taking a closer look at the silhouettes of the clusterings the differences of the clusters
in their corresponding feature spaces and their underlying principles are revealed. As can be
seen in figure 4.10 for NMF and also in illustration 4.11 for PCA, clusters obtained with K-
means yielded in most cases a high silhouette for observations whereas subjects in clusters
produced by CHIMERA scored a negative silhouette for one grouping.

By measuring the distances between neighboring clusterings, the silhouette determines how
consistent a cluster is. Hence, high values for K-means clustering were expected. The reason
for this behaviour is that K-means is based on assigning objects to the nearest cluster center.
Thus, the object wise distance within a cluster was small in comparison to large distances
to observations in other clusters. In CHIMERA clusterings most of the objects in one cluster
yielded to a negative silhouette. In other words, the observation was closer to the nearest
neighboring cluster than to the cluster it was assigned to.

This again illustrated the fundamental difference that was outlined earlier in the methodol-
ogy. K-means aimed to find clusterings based on high dimensional voxel distances whereas
CHIMERA seeked to find groupings via mapping and matching of distributions.

5.1.3 Cluster Analysis

While in the previous section 5.1.2 the clusterings were investigated regarding their similarity
and structure in high dimensional space this section is outlining the differences within a cluster
and possible patterns that might be reflected.

A qualitative assessment of the clusterings without any further knowledge and due to the
limited scope of this thesis is very difficult. Thus, here the different cluster analysis steps that
were taken in section 4.4 were consequently analyzed focusing on obvious patterns. Further-
more it was already shown that K-means and the CHIMERA groupings were fundamentally
different for both confound correction schemes, hence in the following for simplicity only clus-
terings that were adjusted for possible confounding influence based on the patient population
were considered.

Age:

Figure 4.12 illustrates the age distribution in the clusters for multiple granularities for PCA
and NMF.

An observation for CHIMERA clustering based on NMF reduced data was that there were
significant differences (p < 0.05) between the two resulting groupings (for all granularities)
whereas for PCA reduced data none of the components yielded a remarkable age contrast in
the clusters. This dissimilarity illustrated again that CHIMERA clusterings are sensitive to a
priori reduction methods. Every cluster obtained by K-means did not have any significant dif-
ference in the age distribution in the clusters, emphasizing the dissimilarity of both clustering
methods.
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Although there was a difference in CHIMERA clusters regarding based on NMF reduced data
for PCA preprocessed data this did not hold. Hence, summarizing the above, there seemed
to be no constant obvious pattern in patients’ age reflected up by either clustering methods.

Gender:

The percentage of males or females in each specific cluster is illustrated in figure 4.14 where
the percentage was derived based on all male and female subjects in the data set.

Comparing the resulting clusters based on multiple principal components CHIMERA yielded
more males (around 78%) in cluster C2 than in cluster C1 (22%) whereas females were more
equally spread (max. difference of 20 % between clusters). In contrast, K-means structured
clusters in a more balanced way (max. difference of 20 % between clusters) for both female
and male patients.

A similar pattern can be seen for clustering based multiple representations (components)
of the data obtained by NMF whereas in contrary to groupings obtained based on principle
components cluster C2 contained more female patients (46% difference) than in C1. This
again illustrated the sensitivity of CHIMERA to the applied reduction methods. K-means as
also previously observed seemed to spread genders more or less equally over clusters.

Although there were differences in diseased subjects gender for clusters obtained by CHIMERA
the pattern was not consistent for both reduction techniques. In contrary K-means lead to a
balanced distribution of males and females in the clusterings for both dimensionality reduc-
tion techniques. Hence, a consistent obvious pattern for either clustering method was not
obtained.

Disease Duration:

Figure 4.13 illustrates the duration of patients suffering from the Parkinson’s disease.

It can be observed that there was a significant difference (p « 0.05) in terms of patients dis-
ease duration in clusterings for both PCA and NMF reduced data. In other words, cluster
C1 reflected diseased subjects that were more or less recently diagnosed whereas cluster
C2 contained patients in later stages of the disease. In contrast K-means clusterings did not
reflect any significant difference (p > 0.5) or pattern in disease duration.

These results lied emphasis on CHIMERA reflecting the duration of illness of patients. As
the disease duration was not introduced as a covariate to the algorithm, capturing this pat-
tern just based on anatomical differences in human brains gray matter structure would be a
significant indication that CHIMERA clusters reflected the pathological process of patients.
Researchers already demonstrated that this disease duration has an influence on gray matter
structure of Parkinson’s patients. For instance accelerated cortical atrophy is found in PD sub-
jects with a duration of illness of 1-5 years whereas striatal atrophy occurred in PD subjects
that were suffering less than 1 year [73]. In contrast the K-means approach did not reflect a
significant difference (p > 0.05) regarding patients’ disease duration in clusters indicating the
superiority of CHIMERA to identify the pathological process in diseased.
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Scanning location:

Figure 4.15 illustrates the clusterings regarding where patients were scanned.

CHIMERA clusters which were derived based on different NMF and PCA preprocessed data
reflected the scanning site. For clusters based on PCA reduced data one contained all patients
from Aachen the other cluster comprised all diseased subjects from Düsseldorf. A similar pat-
tern was found by clustering different NMF components, where cluster C2 contained 100% of
UKA patients and 30% of UKD diseased subjects, cluster C1 contained the rest of the UKD
patients. This pattern was reflected even though CHIMERA accounted for the scanner loca-
tion via confound correction for site (4.3.1).

Considering that the site was introduced as a possible confound to CHIMERA and that there
was a significant difference in disease duration regarding where patients were scanned (pa-
tients scanned at UKD were more recently diagnosed and in contrary subjects scanned at
UKA already had suffered significantly (p « 0.5) longer from the disease (figure 4.2)). This
emphasized that CHIMERA clusters reflected the duration of illness.

Furthermore, observing the clusterings obtained by K-means, it becomes obvious that there
was no pattern captured by this method. Patients scanned at different locations were rather
equally partitioned throughout the clusters.

5.2 Limitations and Outlook

This section outlines the limitation of this work. Furthermore an outlook is given on how one
could proceed based on the results that this thesis yielded.

5.2.1 Limitation

Data set:

As previously mentioned in 5.1.1 the provided data set was not optimal. Especially the fact
that patients from different sites had suffered for a different amount of time from the Parkin-
son’s disease was very unfortunate. As for now further investigation steps will be required to
identify if CHIMERA reflected different conditions at the two scanner locations or identified the
pathological progression according to the duration of illness.

Furthermore the sample size (180) was small compared to the relatively large feature size
(20792). There are two problems which might have occured:

• Firstly, as the the sample size yielded an upper bound for the dimensionality reduction
methods applied in this work the maximum number of components of the reduced data
was limited by the number of subjects, here 180. In settings where the feature space is
significantly higher than the sample size, the intrinsic feature space (that is the minimal
number of hidden features that explain the data) might be higher than what can be
obtained by the components of the reduction methods. If this holds, both PCA and NMF
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were not capable to explain the data even if all components would have been kept. In
age prediction researchers found the best performance within a 300 to 500 range for
NMF components [74] which is almost twice as many components as provided for this
work.

• Secondly, one fundamental assumption of CHIMERA is that enough healthy patients
have to be collected in order to describe the normal control population. If so, one can
assume that the estimated anatomy of patients, had they been spared of the disease, is
covered by the healthy distribution [17]. Given that CHIMERA was originally evaluated
on a data set twice as large as the size of this work and also included a higher ratio
of normal controls in comparison to the diseased, the number of normal controls in this
work might not have been sufficient to capture the healthy anatomy.

Parameters

Most of the parameters in this thesis were chosen by default, that is taking the authors prede-
fined parameter settings. Most factors however were originally obtained via cross-validation
[44] leading to problem specific characteristics [17]. As parameters were kept fixed for the
entire work different parameterizations would probably have influenced the clusterings.

5.2.2 Outlook

There are a few approaches in order to tackle some of the limitations outlined in 5.2:

1. in order to find out whether CHIMERA reflected the disease duration one could either
use a different data set (where the disease duration is more equally spread) or rerun the
algorithm while introducing duration of illness as a covariate. If CHIMERA identified the
pathological subtypes according to patients’ duration of illness the results are expected
to be similar whereas different results must lead to further investigations.

2. As reduction methods are bound to the sample size including all the limitations that
come along with it, instead of applying these methods an a priori reduction method,
also called atlas, could be used. An atlas is a predefined parcellation of the brain where
multiple voxels are combined for a specific region. Another advantage of using an atlas
is that, once the clusters are calculated, region or voxel wise tests (e.g. a two-sample
t-test) can be performed comparing different clusters of patients as well as the diseased
with the healthy population. This could lead directly to areas that are effecting the clus-
tering (for instance atrophy in a specific brain region might correspond to a specific
suptype and hence to a specific cluster).

3. In order to identify more suitable parameter settings, cross-validation [72] is a commonly
used approach to tackle this issue. Being able to generate problem specific param-
eterization might enhance the capability of CHIMERA to identify subtypes among the
diseased.
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5.3 Conclusion

One of the objectives of this thesis was to find whether it makes a difference to apply CHIMERA
or K-means to Parkinson’s patients and if so, how significant this dissimilarity is. This the-
sis could outline that CHIMERA leaded to fundamentally diverse groupings compared to K-
means. Furthermore it has been shown that this diversity was consistent over multiple com-
ponents of dimensionality reduction methods, namely principle component analysis and non-
negative matrix factorization. In this work also two different schemes of confound filtering
techniques were performed. Neither has shown to produce clusterings which were more sim-
ilar to the ones CHIMERA yielded. Moreover this thesis was able to outline that based on the
used parameter setting CHIMERA was sensitive to reduction methods. Clusterings that were
obtained based on data that was reduced in dimensionality using PCA were different from
those that utilized data reduced by NMF. Although the clusters were different when comparing
the reduction techniques, clusters were consistent over multiple components within the meth-
ods.

While looking at characteristics of subjects in each specific cluster CHIMERA seemed to re-
flect the disease duration of patients. Unfortunately as the patients from Düsseldorf were
relatively recently diagnosed with the disease in contrast to the subjects scanned in Aachen
which were suffering significantly longer from the disease, this could also be a side effect.
As CHIMERA found clusters that reflected the the duration of illness and scanning locality,
K-means in contrary had neither a significant pattern of scanning site nor disease duration
in its clusters. Specifically, K-means did not capture any obvious trend within clusterings
whereas CHIMERA clusters lied emphasis on a pattern of pathological progression. Under
the assumptions that the results yielded by CHIMERA indeed reflected the advancement of
the Parkinson’s disease this would be a significant indication of the superiority of CHIMERA
to capture subtypes of the disease in comparison to K-means.

However there were several limitations of this thesis. Most of them regarding to the provided
data set or to the parameters used in this work. Hence, all acquired results are provided with
caution.

A qualitative statement about which of the investigated clustering methods performed bet-
ter or was even capable to capture the pathological process in the Parkinson’s disease was
- without any further investigation - impossible to make. Nevertheless, this work could show
that the methodologies differed and that there was a chance of CHIMERA clusters reflecting
the pathological progression of the diseased.

Certainly, further investigation is required to overcome the limitations of this work but po-
tentially the results of this thesis can be a good point to start from.
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Chapter 6

Appendix

6.1 Scree Plot

Figure 6.1: Scree Plot

In this example the first two components would be selected.
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6.2 Clustering

(a) Clusterings for different PCA components

(b) Clusterings for different NMF components

Figure 6.2: 2D visualization of CHIMERA vs. K-means clusterings with different granularities.
For K-means without any correction for confounds.The number of components is denoted in
(·).
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6.3 Rand Index

(a) Rand Index for multiple PCA components

(b) Rand index for multiple NMF components

Figure 6.3: Rand index between CHIMERA and different confound correction schemes of
K-means. The number of components is denoted in (·).
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6.4 Silhouettes

(a) Silhouette CHIMERA, NMF 180-components (b) Silhouette K-means, NMF 180-components

(c) Silhouette CHIMERA, NMF 140-components (d) Silhouette K-means, NMF 140-components

Figure 6.4: Silhouette for CHIMERA and K-means for two different NMF granularities. For
K-means confounds were removed based on the total population.

(a) Silhouette CHIMERA, PCA 179-components (b) Silhouette K-means, PCA 179-components

(c) Silhouette CHIMERA, PCA 140-components (d) Silhouette K-means, PCA 140-components

Figure 6.5: Silhouette for CHIMERA and K-means for two different PCA granularities. For
K-means confounds were removed based on the total population.
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6.5 Age

(a) Boxplot regarding age for different PCA components

(b) Boxplot regarding age for different NMF components

Figure 6.6: Boxplots regarding age in the clusters for multiple NMF and PCA granularities.
Confound correction based on the total population. P value refers to a two-sample t-test
between both clusterings.The number of components is denoted in (·).
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6.6 Disease Duration distribution

(a) Boxplot regarding patients disease duration for different PCA components

(b) Boxplot regarding patients disease duration for different NMF components

Figure 6.7: Boxplots regarding patients disease duration for both clustering methods and
multiple NMF and PCA granularities. For K-means confounds correction was based on the
total population. P value refers to a two-sample t-test between both clusterings. The number
of components is denoted in (·).
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6.6.1 Gender

(a) Female distribution for CHIMERA clusters based on PCA
components

(b) Male distribution for CHIMERA clusters based on PCA
components

(c) Female distribution for K-means clusters based on PCA
components

(d) Male distribution for K-means clusters based on PCA com-
ponents

(e) Female distribution for CHIMERA clusters based on NMF
components

(f) Male distribution for CHIMERA clusters based on NMF
components

(g) Female distribution for K-means clusters for NMF compo-
nents

(h) Male distribution for K-means clusters based on NMF
components

Figure 6.8: Illustration of the percentage of males and females in clusters C1 and C2 obtained
from both CHIMERA and K-means based on multiple NMF and PCA components. Correction
for possible confounds was patients and healthy controls. The number of components is
denoted in (·).
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6.6.2 Scanner

(a) Site distribution UKD CHIMERA, PCA (b) Site distribution UKA CHIMERA, PCA

(c) Site distribution UKD K-means, PCA (d) Site distribution UKA K-means, PCA

(e) Site distribution UKD CHIMERA, NMF (f) Site distribution UKA CHIMERA, NMF

(g) Site distribution UKD K-means, NMF (h) Site distribution UKA K-means, NMF

Figure 6.9: Illustration of the percentage of patients scanned at Universitätsklinikum Aachen
(UKA) or Universitätsklinikum Düsseldorf (UKD) in clusters C1 and C2 obtained from both
CHIMERA and K-means for multiple NMF and PCA components. Correction for possible con-
founds were based on patients and healthy controls. The number of components is denoted
in (·).
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