001     847999
005     20240711092228.0
024 7 _ |a 10.3390/met8060430
|2 doi
024 7 _ |a 2128/18910
|2 Handle
024 7 _ |a WOS:000436115600058
|2 WOS
024 7 _ |a altmetric:43796608
|2 altmetric
037 _ _ |a FZJ-2018-03307
082 _ _ |a 530
100 1 _ |a Hüter, Claas
|0 P:(DE-Juel1)169125
|b 0
|u fzj
245 _ _ |a Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
260 _ _ |a Basel
|c 2018
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1528963908_27904
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A key issue in understanding and effectively managing hydrogen embrittlement in complex alloys is identifying and exploiting the critical role of the various defects involved. A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients in the material, as well as microstructural trapping sites such as grain boundaries and dislocations. In particular, the energetic parameters used in this coupled approach are determined from ab initio calculations. Complementary experimental investigations that are presented show that a numerical approach capable of massive scale-bridging up to the macroscale is required. Due to the wide range of length scales accounted for, we apply homogenisation schemes for the hydrogen concentration to reach simulation dimensions comparable to metallurgical process scales. Via a representative volume element approach, an ab initio based scale bridging description of dislocation-induced hydrogen aggregation is easily accessible. When we extend the representative volume approach to also include an analytical approximation for the ab initio based description of grain boundaries, we find conceptual limitations that hinder a quantitative comparison to experimental data in the current stage. Based on this understanding, the development of improved strategies for further efficient scale bridging approaches is foreseen.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shanthraj, Pratheek
|0 P:(DE-HGF)0
|b 1
700 1 _ |a McEniry, Eunan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Spatschek, Robert
|0 P:(DE-Juel1)130979
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Hickel, Tilmann
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tehranchi, Ali
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Guo, Xiaofei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Roters, Franz
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.3390/met8060430
|g Vol. 8, no. 6, p. 430 -
|0 PERI:(DE-600)2662252-X
|n 6
|p 430 -
|t Metals
|v 8
|y 2018
|x 2075-4701
856 4 _ |u https://juser.fz-juelich.de/record/847999/files/Invoice_MDPI_metals-304830_884.93EUR.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/847999/files/Invoice_MDPI_metals-304830_884.93EUR.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/847999/files/Invoice_MDPI_metals-304830_884.93EUR.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/847999/files/Invoice_MDPI_metals-304830_884.93EUR.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/847999/files/Invoice_MDPI_metals-304830_884.93EUR.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/847999/files/Invoice_MDPI_metals-304830_884.93EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/847999/files/metals-08-00430.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/847999/files/metals-08-00430.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/847999/files/metals-08-00430.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/847999/files/metals-08-00430.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/847999/files/metals-08-00430.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:847999
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130979
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METALS-BASEL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21