000848040 001__ 848040
000848040 005__ 20240711101507.0
000848040 0247_ $$2doi$$a10.1016/j.apenergy.2018.10.026
000848040 0247_ $$2ISSN$$a0306-2619
000848040 0247_ $$2ISSN$$a1872-9118
000848040 0247_ $$2WOS$$aWOS:000454376900082
000848040 037__ $$aFZJ-2018-03330
000848040 082__ $$a620
000848040 1001_ $$0P:(DE-Juel1)168221$$aZhang, Shidong$$b0$$eCorresponding author$$ufzj
000848040 245__ $$aModeling polymer electrolyte fuel cells: A high precision analysis
000848040 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000848040 3367_ $$2DRIVER$$aarticle
000848040 3367_ $$2DataCite$$aOutput Types/Journal article
000848040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619164504_2073
000848040 3367_ $$2BibTeX$$aARTICLE
000848040 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848040 3367_ $$00$$2EndNote$$aJournal Article
000848040 520__ $$aIn this paper, a computational model is used to study the distributions of several key parameters and the performance of a fuel cell with an active area of 200 . The results reveal that the model is capable of predicting the overall behavior in good agreement with experimental data and with superior resolution. Polarization curves are compared and cell voltage prediction deviations are within of experimental values. The predicted current density distribution is very close to both the experimentally measured results and a volume-average approach based on rate equations. Local variations of current density, oxygen, and water mole fraction change significantly from under-rib regions to under-channel regions. The serpentine type flow path leads to greater pressure gradients, but is beneficial to gas bypassing through the gas diffusion layers. This type of flow path helps to redistribute the species and current density distributions. Never before has it been possible to construct computational models capable of predicting fine-scale details in local current density; details which were not captured neither by previous models nor by present-day experiments.
000848040 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000848040 536__ $$0G:(DE-Juel1)jara0070_20131101$$aFlexible Simulation of Fuel Cells with OpenFOAM (jara0070_20131101)$$cjara0070_20131101$$fFlexible Simulation of Fuel Cells with OpenFOAM$$x1
000848040 588__ $$aDataset connected to CrossRef
000848040 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b1$$ufzj
000848040 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven$$b2$$ufzj
000848040 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3$$ufzj
000848040 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000848040 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.10.026$$gVol. 233-234, p. 1094 - 1103$$p1094 - 1103$$tApplied energy$$v233-234$$x0306-2619$$y2019
000848040 8564_ $$uhttps://juser.fz-juelich.de/record/848040/files/1-s2.0-S0306261918315769-main.pdf$$yRestricted
000848040 8564_ $$uhttps://juser.fz-juelich.de/record/848040/files/1-s2.0-S0306261918315769-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000848040 909CO $$ooai:juser.fz-juelich.de:848040$$pVDB
000848040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168221$$aForschungszentrum Jülich$$b0$$kFZJ
000848040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b1$$kFZJ
000848040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b2$$kFZJ
000848040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b3$$kFZJ
000848040 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b3$$kRWTH
000848040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000848040 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000848040 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000848040 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000848040 9141_ $$y2019
000848040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000848040 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848040 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848040 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848040 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000848040 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000848040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848040 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848040 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848040 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000848040 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000848040 920__ $$lyes
000848040 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000848040 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000848040 980__ $$ajournal
000848040 980__ $$aVDB
000848040 980__ $$aI:(DE-Juel1)IEK-3-20101013
000848040 980__ $$aI:(DE-82)080012_20140620
000848040 980__ $$aUNRESTRICTED
000848040 981__ $$aI:(DE-Juel1)ICE-2-20101013