001     848042
005     20240711101507.0
024 7 _ |a 10.1016/j.ijhydene.2018.08.058
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000446949400042
|2 WOS
037 _ _ |a FZJ-2018-03332
082 _ _ |a 660
100 1 _ |a Janssen, Holger
|0 P:(DE-Juel1)129863
|b 0
|e Corresponding author
245 _ _ |a Design and Experimental Validation of a HT-PEFC Stack with Metallic BPP
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547476301_17711
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper provides detailed insight into the design, construction, production and verification of a metallic bipolar plate for High Temperature Polymer Electrolyte Fuel Cell stacks. With a focusing on applications with power demands of 5–10 kW, the active cell area is set to a maximum of 100 cm2. The double-plate-concept allows for liquid cooling in the inner bipolar plate compartment. Due to the bipolar plate production by hydroforming of thin stainless steel foils the structure of the coolant compartment is dependent on the gas flow field design. To ensure proper cooling functionality a co-design is necessary. The flow field design, in conjunction with the flow configuration of the reactants (reformate, air) and coolant, considers the effects of hydrogen and oxygen depletion on current density distribution, as well as the temperature profile on carbon monoxide poisoning. These specifications are based on previously published results. For validation, a 5-cell stack with commercial Membrane Electrode Assemblies was operated at 160 °C and 0.2 A/cm2 and regularly interrupted for the polarization curve measurement. After 4700 h of continuous operation, the test was terminated due to a rapid voltage drop in one of the cells. In this paper, it is shown that novel metallic bipolar plates from thin metal sheets can be used for the long-term operation of High Temperature Polymer Electrolyte Fuel Cell stacks.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Edelmann, Achim
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mildebrath, Thea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Patrick
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 4
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 5
773 _ _ |a 10.1016/j.ijhydene.2018.08.058
|g Vol. 43, no. 39, p. 18488 - 18497
|0 PERI:(DE-600)1484487-4
|n 39
|p 18488 - 18497
|t International journal of hydrogen energy
|v 43
|y 2018
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/848042/files/1-s2.0-S0360319918325709-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848042/files/1-s2.0-S0360319918325709-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:848042
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129863
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21