000848044 001__ 848044
000848044 005__ 20240712113232.0
000848044 0247_ $$2doi$$a10.1149/2.1201810jes
000848044 0247_ $$2ISSN$$a0013-4651
000848044 0247_ $$2ISSN$$a0096-4743
000848044 0247_ $$2ISSN$$a0096-4786
000848044 0247_ $$2ISSN$$a1945-6859
000848044 0247_ $$2ISSN$$a1945-7111
000848044 0247_ $$2ISSN$$a2002-2015
000848044 0247_ $$2ISSN$$a2156-7395
000848044 0247_ $$2Handle$$a2128/21191
000848044 0247_ $$2WOS$$aWOS:000441061800113
000848044 037__ $$aFZJ-2018-03334
000848044 082__ $$a660
000848044 1001_ $$0P:(DE-HGF)0$$aBecker, Hans$$b0
000848044 245__ $$aDetermination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Eelctrolyte Membranes
000848044 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2018
000848044 3367_ $$2DRIVER$$aarticle
000848044 3367_ $$2DataCite$$aOutput Types/Journal article
000848044 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627632804_3939
000848044 3367_ $$2BibTeX$$aARTICLE
000848044 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848044 3367_ $$00$$2EndNote$$aJournal Article
000848044 520__ $$aThe passage of an electrical current through phosphoric acid doped polymer membranes involves parasitic migration of the acid, which imposes a critical issue for long-term operation of the high temperature polymer electrolyte membranes fuel cell (HT-PEMFC). To elucidate the phenomenon, a three-layered membrane is constructed with embedded micro reference electrodes to measure phosphoric acid redistribution in a polybenzimidazole based membrane. Under a constant load, a concentration gradient develops due to the acid migration, which drives the back diffusion of the acid and eventually reaches a steady state between migration and diffusion. The acid gradient is measured as a difference in local ohmic resistances of the anode- and cathode-layer membranes by electrochemical impedance spectroscopy. The phosphoric acid diffusion coefficient through the acid doped membrane is about 10−11 m2 s−1, at least one order of magnitude lower than that of aqueous phosphoric acid solutions. The anion (H2PO4−) transference number is found to range up to 4% depending on current density, temperature and atmospheric humidity of the cell, implying that careful control of the operating parameters is needed in order to suppress the vehicular proton conduction as a degradation mitigation strategy.
000848044 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000848044 588__ $$aDataset connected to CrossRef
000848044 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b1$$eCorresponding author
000848044 7001_ $$0P:(DE-HGF)0$$aAili, David$$b2
000848044 7001_ $$0P:(DE-HGF)0$$aCleemann, Lars N.$$b3
000848044 7001_ $$0P:(DE-HGF)0$$aJensen, Jens Oluf$$b4
000848044 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b5
000848044 7001_ $$0P:(DE-HGF)0$$aLi, Qingfeng$$b6$$eCorresponding author
000848044 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.1201810jes$$gVol. 165, no. 10, p. F863 - F869$$n10$$pF863 - F869$$tJournal of the Electrochemical Society$$v165$$x0013-4651$$y2018
000848044 8564_ $$uhttps://juser.fz-juelich.de/record/848044/files/J.%20Electrochem.%20Soc.-2018-Becker-F863-9.pdf$$yOpenAccess
000848044 8564_ $$uhttps://juser.fz-juelich.de/record/848044/files/J.%20Electrochem.%20Soc.-2018-Becker-F863-9.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000848044 909CO $$ooai:juser.fz-juelich.de:848044$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000848044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b1$$kFZJ
000848044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b5$$kFZJ
000848044 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b5$$kRWTH
000848044 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000848044 9141_ $$y2018
000848044 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848044 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000848044 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000848044 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2017
000848044 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848044 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848044 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848044 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848044 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000848044 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848044 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848044 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000848044 920__ $$lyes
000848044 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000848044 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000848044 9801_ $$aFullTexts
000848044 980__ $$ajournal
000848044 980__ $$aVDB
000848044 980__ $$aI:(DE-Juel1)IEK-3-20101013
000848044 980__ $$aI:(DE-Juel1)IEK-14-20191129
000848044 980__ $$aUNRESTRICTED
000848044 981__ $$aI:(DE-Juel1)ICE-2-20101013
000848044 981__ $$aI:(DE-Juel1)IET-4-20191129
000848044 981__ $$aI:(DE-Juel1)IET-4-20191129