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Abstract4

A mesoscopic pedestrian model is proposed, considering pedestrians as individuals and describing their5

movement by means of aggregate density-flow relationships. The model builds on a stochastic process, de-6

scribing transition rates among adjacent sites on a lattice. Each lattice can contain several pedestrians. The7

approach is minimal and fast to simulate, and, by construction, capable of capturing population hetero-8

geneity as well as variability in walking behaviour and en-route path choice. The model is more efficient9

than microscopic models, and potentially more accurate than macroscopic ones. We calibrate and validate10

the model using real data and carry out several numerical experiments to present its key properties and11

possible applications for simulation of large-scale scenarios.12
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1 Introduction14

Pedestrian dynamics have attracted the attention of scientists and practitioners for several decades (Fruin;15

1971; Hankin and Wright; 1958). Recent efforts testify to their increasing importance, fuelled by a rapidly16

growing world population and an advancing urbanisation.17

While there is a general need to better understand pedestrian dynamics as such, there is a particular need18

for adequate models that can be used to improve the safety, efficiency and comfort of pedestrian facilities.19

In the past, such models have been successfully deployed for studying pilgrim movements on holy sites (Al-20

Gadhi and Mahmassani; 1991), crowd behaviour in large-scale events including panic (Helbing et al.; 2000a,21

2002), evacuation at the level of buildings or entire regions (Kirchner and Schadschneider; 2002; Lämmel22

et al.; 2010), as well as pedestrian flows occurring in transportation hubs (Daamen; 2004; Hänseler; 2016) or23

in urban facilities (Borgers and Timmermans; 1986; Hoogendoorn and Bovy; 2004).24

Despite these advancements, there is still a lack of models that are at the same time accurate and efficient25

(Duives et al.; 2013). Among models that have made it to the engineering practice, there is a clear dominance26

of microscopic models, such as the social force model (Helbing and Molnár; 1995). Microscopic models27

consider pedestrians as a set of individuals, whose movement through space and time is described in detail.28

Their strengths include the ability to describe heterogeneity across individuals, their capability to reproduce29

collective phenomena such as lane formation, as well as their realism and visual appeal (Helbing et al.; 2001).30

On the other hand, microscopic models are computationally expensive, and difficult to calibrate on real data31

(Hoogendoorn and Daamen; 2009).32

Large-scale or time-critical applications, for which computational efficiency and a stringent validation are33

key, have thus not yet fully benefited from the advancements in pedestrian modelling. Notably, this includes34

large-scale planning, real-time monitoring of crowds, as well as crowd management, where pedestrians are35

actively controlled (Abdelghany et al.; 2012; Seer et al.; 2008; Shende et al.; 2011).36

In principle, macroscopic models may be used in that context, considering pedestrians as a continuum37

(Hughes; 2002). Macroscopic models typically rely on a small set of parameters that are accessible to phys-38

ical interpretation, can be readily calibrated on data, and often run orders of magnitude faster than real-time.39

However, macroscopic models have limitations as well. Most importantly, they ignore differences in walking40

characteristics among pedestrians. Such heterogeneity may be due to differences in trip purpose, cultural41

background, age, health or other factors that are known to influence walking behaviour (Seyfried et al.; 2005;42

Weidmann; 1992). Related to that, most macroscopic models are deterministic in nature, and reproducing43

natural variability in densities or walking times, as it may be required for level-of-service assessment or44

demand estimation (Hänseler, Molyneaux and Bierlaire; 2017), may be difficult.45
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In this contribution, we put forward a new type of pedestrian flow model that may be referred to as46

mesoscopic. The proposed model provides an interesting compromise between the level of detail of the47

flow description and computational complexity for the simulation of large scale scenarios, e.g., evacuation48

at the level of buildings or entire regions as well as pedestrian flows occurring in transportation hubs or in49

urban facilities. An explicit representation of pedestrians allows to consider individual differences in walking50

behaviour, for instance in terms of free-flow speeds. It is inherently stochastic, and thus able to reproduce51

‘natural’ fluctuations in walking speeds or en-route path choice. The propagation of pedestrians is described52

at the aggregate level, thus allowing for low computational cost. In fact, it may be even more efficient53

than discrete-time macroscopic models under certain conditions. Finally, the proposed model can reproduce54

several well-known features of pedestrian traffic such as the occurrence of a fundamental diagram and its55

variability, queuing and rarefaction, or lane formation in counter-flow, and provides good estimates of travel56

or egress times.57

The remainder of this article is structured as follows: Sec. 2 provides a brief review of existing pedestrian58

flow models. An analytical and a simulation-based formulation of the model are given in Sec. 3, while its59

properties are analysed by simulation in Sec. 4. Some comparison to real data is carried out in Sec. 5. Sec. 660

provides a large-scale numerical example and Sec. 7 concludes with final remarks.61

2 Literature review62

Some of the key approaches to modelling pedestrian flow at the micro-, macro- and mesoscopic level are63

described in the following. Related models from physics and vehicular traffic, forming the foundation of the64

approach presented in this manuscript, are also briefly exposed.65

In microscopic models, collective walking phenomena emerge from mutual interactions among indi-66

viduals. In the aforementioned social force model, pedestrians are subject to Newton-like forces, and the67

dynamics are governed by equations of motion (Helbing and Molnár; 1995). It represents by and large the68

most popular pedestrian walking model, owing to its accuracy and visual appeal that make up for its rela-69

tively high computational complexity. Cellular automata describe the local movement of pedestrians by a set70

of behavioural rules that determine the transition probabilities to adjacent locations (Blue and Adler; 2001).71

These transition probabilities depend on the desired walking direction of a pedestrian, and the availability72

of space in the vicinity. Burstedde et al. (2001) additionally consider the notion of a floor field to steer73

pedestrians along their desired path, managing to describe collective effects such as lane formation. The74

resulting models are known for their low computational cost, but also for their limited capability to consider75

population heterogeneity, or to reproduce plausible pedestrian dynamics in multi-directional or congested76

flow. More recent models focus on the reproduction of plausible density-speed relationships, but still lack77

a realistic representation of heterogeneity (Crociani and Lämmel; 2016; Flötteröd and Lämmel; 2015). A78

next-step model based on a discrete choice framework is proposed by Antonini et al. (2006). Their approach79

focuses on the short-term behaviour of individuals as a response to the presence of other pedestrians, and80

a particular effort to obtain a reliable model calibration is made. Last but not least, in the gaming industry81

collision-avoidance models have gained a certain popularity due to their visual realism. Such models rely82

on predictive measures, or on synthetic vision, to anticipate and prevent collisions (Ondřej et al.; 2010; Paris83

et al.; 2007).84

Macroscopic models consider pedestrians as a ‘thinking fluid,’ and have gained increasing popularity85

since a continuum theory for pedestrian flow has first been proposed by Hughes (2002). Typically, a con-86

servation equation is combined with a phenomenological density-flow relationship, widely referred to as87

‘fundamental diagram.’ To model the walking direction, a continuous floor field is assumed that leads pedes-88

trians to their desired destination, while minimising travel time and avoiding areas of high density. Several89

researchers have proposed extensions to the model, or developed numerical schemes for its efficient compu-90

tation (Hänseler et al.; 2014; Huang et al.; 2009). Colombo and Rosini (2005) consider ‘over-compressed’91

densities that may arise in situations of panic, providing a mathematical framework for studying non-classical92

shocks in one-dimensional space. Another extension is due to Hänseler, Lam, Bierlaire, Lederrey and Nikolić93

(2017), who study anisotropic flow, i.e., the circumstance that walking speed depends on the walking direc-94

tion in multi-directional flow at intermediate and high densities. Using a measure-theoretic approach, Piccoli95

and Tosin (2011) describe a model based on a generalised continuity equation in which a family of measures96

is pushed forward by a flow map. Finally, Hoogendoorn et al. (2014) derive a continuum model from Hel-97

bing’s social force model by assuming a homogeneous population. All acceleration terms are set to zero,98

yielding an equilibrium model that is similar to the approach proposed by Hughes (2002).99

Mesoscopic models consider pedestrians as individuals, but describe their propagation by aggregate rela-100

tionships. They are better at incorporating and providing population heterogeneity than macroscopic models,101
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and typically more efficient than microscopic models. Løvås (1994) proposes a network-based pedestrian102

flow model involving a queueing system. Pedestrian facilities are modelled as a network of walkway sec-103

tions, where each pedestrian is treated as a separate flow object that interacts with others. To describe the104

propagation of walking pedestrians, an empirical density-speed relationship is used. The model is particularly105

useful for situations where a network representation readily follows from the building geometry, such as for106

longitudinal corridors. For general building layouts, as well as for situations involving multi-directional flow,107

the model is less practical. Another example is due to Treuille et al. (2006), who transform Hughes’ con-108

tinuum model into a particle representation. Despite the model being based on continuum dynamics, some109

explicit particle-to-particle interaction is considered, for instance to enforce a pair-wise minimum distance110

between pedestrians. The main purpose of this model lies in the provision of real-time animations, which for111

most applications in transportation engineering is less relevant. Finally, while not being mesoscopic in the112

strict sense, hybrid models may be mentioned. Hybrid models combine models formulated at different levels113

of aggregation to yield a compromise between computational complexity and accuracy (Crociani et al.; 2016;114

Lämmel et al.; 2014). Ensuring consistency across levels, both in terms of parameter calibration and in terms115

of state variables, makes using such models however often difficult.116

Two recent vehicular models may finally be discussed. Both of them rely on a stochastic misanthrope117

process, like the model proposed in this work. The misanthrope process has originally been introduced by118

Cocozza-Thivent (1985) to study electrolytes. It represents a jump process describing particles evolving119

on a lattice of finite dimension, where the transition rates depend on the states of the departure and arrival120

site. More precisely, the term misanthrope reflects the property that the transition rate is a non-decreasing121

function of the particle number on the departure site, and a non-increasing function of the particle number122

on the arrival site. In other words, the demand of movement within a space section increases as the density123

increases, while the supply of a section decreases as the density increases. We note that in the context of124

proxemics (Hall et al.; 1968), this mechanism can be behaviourally interpreted as the tendency of a pedestrian125

to avoid dense spaces and thereby to optimize speed and travel time.126

The misanthrope process is a generalisation of the zero-range and exclusion processes (Evans and Han-127

ney; 2005; Liggett; 1985). One of its key properties is that, provided some constraints on these transition128

rates, it has an exact steady-state solution of factorised form that may be obtained analytically. Kanai (2010)129

presents a stochastic model to describe two-lane traffic on a highway, which is discretised into lane segments130

that can hold at most one vehicle at a time. Transition probabilities of each combination of possible states131

are specified to describe the propagation and lane-changing of vehicles. Tordeux et al. (2014) use a misan-132

thrope process to model single-lane highway traffic. The model can be seen as a continuous-time extension133

of cellular automata, however relying on a fundamental diagram instead of a set of behavioural rules. Both134

analytical solutions for simple cases, as well as simulations of more general settings are discussed.135

In the ensuing, a mesoscopic pedestrian flow model is presented. Pedestrians are represented explicitly as136

in microscopic models, and their propagation is described macroscopically by a density-speed relationship.137

Thus individuals can be traced throughout the system, which makes the proposed model suitable for integra-138

tion within an agent-based framework, while requiring substantially less computation time than microscopic139

approaches. Furthermore, the model allows to capture the inherent variability of pedestrian flow, both in140

terms of population heterogeneity and general stochasticity. Unlike in vehicular traffic and queuing models,141

pedestrians are not confined to fixed lanes and can explore space freely. To illustrate the modelling approach,142

we rely on a minimalistic formulation, but emphasise potential generalisations wherever feasible.143

3 A mesoscopic pedestrian model144

3.1 Definition of the model145

The proposed pedestrian model describes walking behaviour in two dimensions for a given pedestrian origin-146

destination demand. It is defined in discrete space and continuous time. A hexagonal lattice is considered in147

the following, yet any lattice may be used. Unlike in the case of square grids, the definition of neighbours in148

hexagonal lattices is straightforward, making them a popular choice in pedestrian flow studies (Davidich and149

Köster; 2013; Gipps; 1986; Guo et al.; 2011; Hartmann; 2010). The length of the hexagon face is denoted by150

a > 0, while the hexagon area is given by α = 1.5
√

3a2. Each hexagon can contain up toN ≥ 1 pedestrians,151

depending on the pedestrian size. If we refer to the maximal density by ρjam, then the static cell capacity is152

given by N = dαρjame. We denote by n ∈ [0, N ] the number of pedestrians in a given hexagon and by ni,153

i = 1, . . . 6, the pedestrian numbers in the neighbouring cells (see Fig. 1).154

As for a basic Poisson queuing process, exponential distributions describe the time between events (i.e.155

between pedestrian movements from one cell to another, henceforth referred to as ‘jump’). However, in156

contrast to Poisson processes, their rate of occurrence is a dynamic quantity depending on the system state.157
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Figure 1: Space representation of the mesoscopic model. Each hexagon can contain up to N ≥ 1 pedestrians. The
integers n and (ni) are the pedestrian numbers in a hexagon and its six neighbours. A pedestrian jumps from a hexagon
to one of the neighbours according to given jump rates b depending on pedestrian numbers on departure and arrival sites
and on the direction.

We suppose that each pedestrian expresses an individual jump rate depending on the aggregated density level158

on the cells, as well as on personal characteristics. These characteristics are subsumed into classes. Each159

pedestrian is associated with exactly one class c. The number of classes can be defined freely; in principle,160

there may be as many classes as there are pedestrians, or only a single one for the entire population. The jump161

rate b(c) of a pedestrian from class c in a hexagon with n ∈ [1, N ] pedestrians to hexagon i is the product162

b(c)(n, i) =
κ

n
J (c)(n, ni)D

(c)(hi, J
(c)(n, ni)), (1)

where it holds by convention b(c)(0, i) = 0 when no pedestrian is present (i.e. n = 0). Here:163

• J (c)(n, ni) is the specific flow (i.e. the flow by unit of width) from the considered hexagon to hexagon164

i in absence of any assumptions regarding walking direction,165

• D(c)(hi, J
(c)) is a directional factor with hi the direction from the considered hexagon to hexagon i.166

The flow J is supposed to be a non-decreasing function of the pedestrian number on the departure cell, and167

a non-increasing function of the pedestrian number on the arrival cell. It is calibrated by a given uni-modal168

fundamental diagram describing a phenomenological relationship between the flow and the density (Seyfried169

et al.; 2005; Treiber and Kesting; 2013). The factor D allows to specify a desired walking direction and170

depends on the intended destination of the pedestrians. The parameter κ = 1.5a is a coefficient that depends171

on the type of lattice. The factor 1.5 in the definition of κ is due to hexagons being tangled. It would be 1 for172

a regular square lattice or (
√

2)−1 for a triangular lattice.173

No first-in first out (FIFO) rules are imposed and the total jump rate from the considered cell to the cell i174

is175

b(n, i) =

n∑
m=1

b(cm)(n, i), (2)

where m refers to the class number. Consequently, b(n, i) = κJ (c)(n, ni)D
(c)(hi, J

(c)(n, ni)) if all the176

pedestrians are from the same class c (i.e. cm = c for all m). For a static cell capacity of N = 1, a177

microscopic model results that represents a stochastic exclusion process (Liggett; 1985; Spitzer; 1970). This178

special case is briefly described below (see Sec. 4). The main part of the paper considers the case where N is179

large, i.e., where the cell area is such that it can contain more than a single pedestrian. In this case the model180

is mesoscopic, and represents a stochastic misanthrope process (Cocozza-Thivent; 1985).181

3.1.1 Uni-directional case182

The specific flow J (c) for pedestrian class c is the minimum between the demand ∆(c)(·) of the considered183

hexagon and the supply Σ(c)(·) of the destination hexagon i184

J (c)(n, ni) = min{∆(c)(n/α),Σ(c)(ni/α)}. (3)

Such a flow model corresponds to the discretised macroscopic conservative equation of transport that results185

when using a Godunov scheme (Eymard et al.; 2012; Lebacque; 1996). The same modelling approach is used186
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in Osorio et al. (2011); Tordeux et al. (2014) for homogeneous flows. The demand ∆(c)(·) and supply Σ(c)(·)187

functions follow from the fundamental diagram (FD). Many shapes for the fundamental diagram exist in the188

literature (see, e.g., Bellomo and Dogbe (2011); Treiber and Kesting (2013)). Some approaches consider189

multi-directional flows (Hänseler, Lam, Bierlaire, Lederrey and Nikolić; 2017; Wong et al.; 2010; Xie and190

Wong; 2015) as well as heterogeneity (Corbetta et al.; 2015; Jabari et al.; 2014; Nikolić et al.; 2016). In191

the following, the FD is minimal and assumed triangular (Flötteröd and Lämmel; 2015; Newell; 2002), see192

Fig. 2, left panel. Yet any uni-modal shape may be used. The triangular FD is based on three parameters,193

namely the desired speed v0 (the slope of the FD in the free state), the shock-wave speed γ (the absolute slope194

in the congested state), and the maximal pedestrian density threshold ρjam. The demand and supply functions195

are respectively ∆(ρ) = min{Q, v0ρ} and Σ(ρ) = min{Q, γ(ρjam − ρ)}, where Q = v0ρjam/(1 + v0/γ) is196

the maximal specific flow. Note that here the parameters v0, γ and ρjam depend on the considered pedestrian197

class to take into account population heterogeneity. They may also depend on the location to take into account198

spatial dependencies due to the geometry.199

The granularity of the model is determined by the hexagon lattice size α and the face length a. The200

granularity is maximal when the hexagon size is equal to that of a pedestrian and N = 1 (exclusion process).201

Yet, special conditions for N are required to well define the desired speed v0. Specifically, the desired202

speed must be reachable in free-flow situations and consequently the demand v0/α must be smaller than203

the maximal specific flow Q. This condition is α ≥ v0/Q or N ≥ 1 + v0/γ. Such a condition does not204

hold for any v0, γ and N . In fact, the speed in the free state is effectively v0 if the cell size (and so N )205

is sufficiently large. If N < 1 + v0/γ, then the maximal speed is bounded by v0/(1 + v0/γ). Yet such206

a bound can be corrected by specifying the slope of the congested part of the fundamental diagram γ as207

γ̃ = max{γ, v0/(N − 1)}. In such a case, the fundamental diagram is simply the linear function ρ 7→ v0ρ208

for the exclusion process where N = 1. It does not depend on the congested part of the FD. The speed is209

equal to the desired speed if the site is free and zero if it is occupied. No parameter except the exclusion rule210

calibrates the congested state for this special microscopic case.211

The direction factorD(c) considers the walking direction h to specify the overall movement of pedestrians.212

For simplicity, the direction h is assumed to be exogenous, but it may also be obtained from a static floor213

field model, as in Burstedde et al. (2001), or from an eikonal-type equation as in Hughes (2002). Specifically,214

the factor for the desired direction h is215

D(c)(hi, J
(c)(n, ni)) =

{
1 if i = arg maxj w

(c)(h− hj)J (c)(n, nj),

0 otherwise,
(4)

with w(c) a weight function that may depend on the pedestrian class. In the following w : x 7→ 1 + cos(x)216

is taken to illustrate the model (Johansson et al.; 2007), yet other shapes may be used (for instance piecewise217

constant as in Helbing and Molnár (1995)). In the special case where w(·) is constant, pedestrians no longer218

have a desired direction and simply aim to maximise the flow. Such a case is illustrated in Sec. 4 (see Fig. 8,219

right panel).220

The destination factorD(c) is zero for all neighbouring cells except the one maximisingw(c)(h−hi)J (c)(n, ni).221

If several neighbours maximise such a quantity, then only one among them is randomly chosen. Except in222

the latter case, the rule for the direction is strictly deterministic. Further randomness could be added by keep-223

ing small probabilities to choose one of the cells that do not maximise the weighted flow, notably to avoid224

deterministic gridlocks.225

3.1.2 Multi-directional case226

The multi-directional model is an extension of the uni-directional model taking into account heterogeneity227

in walking directions across the population, as well as additional friction effects due to multi-directional228

movements. The modelling approach is based on a segmentation of pedestrians by direction and, for the sake229

of illustration, on trapezoidal fundamental diagrams to describe the dependency of walking speed on density.230

In the following, we consider pedestrian flows with d ≥ 1 different desired directions (h1, h2, . . . hd).231

The state of the system is henceforth described by the pedestrian numbers by desired direction (nh1
, . . . nhd

)232

for each hexagon. The different pedestrian numbers evolve in interaction. We denote by233

ph =
nh∑
h nh

(5)

the proportion of pedestrians with desired direction h ∈ (h1, . . . hd) in the considered hexagon. The jump234

rate for the pedestrians with desired direction h to the destination i is235

b(c)
h (n, i) = κ ph J

(c)
h (n, ni)D

(c)(hi, J
(c)
h (n, ni)). (6)
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Figure 2: Minimal example specification of model functions. Left panel: Triangular fundamental diagram with three
parameters and associated demand ∆(·) and supply Σ(·) functions. Right panel: Weight function w : x 7→ 1 + cos(x)
for the direction factor.

In order to model friction between pedestrians with different directions, the maximal specific flow (and so the236

demand and supply functions), independently of the pedestrian class, is bounded by direction (Zhang et al.;237

2012) (see Fig. 3)238

J (c)
h (n, ni) = min{J (c)(n, ni), p̃i,hQ

(c)}. (7)

Here p̃i,h = p0 + (1 − p0)pi,h is the proportion upper to p0, i.e. the proportion bounded to the left by p0,239

of pedestrians with destination h on i, pi,h being the corresponding actual proportion, and p0 ∈ [0, 1] a240

threshold parameter for the friction. The parameter is in the following assumed constant but in principle it241

may depend on the type of interactions (counter-flow, cross-flow, etc.) as well as on the pedestrian class.242

Trapezoidal shapes are used to describe pedestrian dynamics in Asano et al. (2007).243

The multi-directional model reduces to the uni-directional one if only one desired direction h exists244

(i.e. d = 1), since in this case ph = 1 and Jh = J , see Eq. (1). For multiple directions, the jump rate245

decreases for a given direction h when the cells are occupied by pedestrians with different directions as long246

as the parameter p0 is sufficiently low. For instance, if p0 = 0, the jump rates to cells that do not contain247

any pedestrians with the same direction are zero. Inversely, for p0 = 1, pedestrians change cells with no248

distinction of the different pedestrian directions. In such a case, the flow Jh becomes independent of the249

desired direction such that Jh = J for all h. There is no more friction effect.250
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Figure 3: Fundamental diagram for a given direction h according to the proportion ph of pedestrians with the same
direction with p0 = 0.2.

3.2 Stationary distribution251

The proposed model is a Markovian process representing a finite system. Such Markovian processes can the-252

oretically be described in stationary state by solving global balance equations that are referred to as Fokker-253

Planck in physics or Kolmogorov backward equations in the context of interactive particle systems. They are254

expressed as255

dP (t)

dt
= P (t)Q(t), (8)
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where the term P describes the probability of any possible configuration, and where Q represents a Marko-256

vian matrix for the jump rate from one configuration to another (given by the function b). The problem is257

a linear differential system, whose complexity increases exponentially with the number of possible config-258

urations. Generally speaking, no explicit solution exists for heterogeneous systems or complex geometries.259

Therefore, Eq. (8) has to be approximated numerically or by simulation.260

Particular processes exist for which the stationary distribution has a product form. This is notably the case261

for the zero-range process (see Evans and Hanney; 2005). Such a property allows to considerably simplify262

the solution space and to obtain explicit stationary distributions even for complex systems by using mean263

field theory (Schadschneider et al.; 2010). However, the misanthrope process has a product form invariant264

distribution if and only if the jump rate b satisfies the recursive relation (Cocozza-Thivent; 1985)265

b(n, 0) +
b(1, n)

b(n+ 1, 0)

b(p, 0)

b(1, p− 1)
b(n+ 1, p− 1) = b(n, p) + b(p, 0), (9)

n being the number of particles on the departure site and p the number on the arrival site. The function b can266

be constructed recursively, starting with b(n, 0), n = 1, . . . , N , and b(1, p), p = 0, . . . , N − 1. The model is267

then characterized by the two functions b(n, 0) and b(1, p).268

The jump rate function defined by Eq. (3) does not satisfy the above conditions. Nevertheless, one can269

define b(n, 0) = ∆(n/D) and b(1, N) = Σ(p/N) based on the triangular fundamental diagram and compute270

the other values b(n, p) according to Eq. (9). Then, the uni-dimensional stochastic process admits a product271

stationary measure. However, the validity of this reasoning is questionable. Fig. 4 presents the jump rate272

function for the triangular fundamental diagram, Eq. (3), and for the associated measure product recursive273

condition, Eq. (9). The form induced by a product stationary measure is not reasonable since the jump rate274

is approximately nil as soon as the density is higher than the critical density threshold.275

As such, Eq. (9) is restrictive and implies a non-linear shape of the jump rate. Consequently, only basic276

systems can be analysed theoretically (e.g. homogeneous systems on a single site, as in Kanai; 2010; Osorio277

et al.; 2011; Tordeux et al.; 2014). In contrast, the experiments we carry out in the following are relatively278

complex, involving multi-directional flow and non-trivial geometries. They can in general not be solved279

explicitly, and instead have to be investigated numerically by simulation. A simulation-based formulation of280

the model is described below.281
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Figure 4: Triangular fundamental diagram, Eq. (3), and corresponding fundamental diagram for the measure product
recursive condition, Eq. (9). Left panel: Flow/density plot. Right panel: Speed/density plot. The form induced by the
product stationary distribution is not reasonable since the jump rate is approximately nil as soon as the density is higher
than the critical density threshold.

3.3 Simulation-based formulation282

The simulation of the model is straightforward. It can be carried out in continuous time, without any require-283

ment of discretisation. Each hexagon containing at least one pedestrian has a continuous exponential time T0284

determining the next jump time. The jump time T0 depends on the system state through the jump rate b285

T0 = t+ E(b), (10)

with E(b) representing an independent exponential random variable with mean 1/b and t denoting the global286

simulation time. The simulation of the process is event-based. It involves the iterative application of the three287

operations (see Fig. 5)288
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1. Select the cell with minimal time;289

2. Execute the jump and update the time;290

3. Calculate the new jump times of the cells where the jump rate changed.291

At each jump, only the jump times of the cells where the jump rate changed have to be updated. Therefore,292

the computational effort is proportional to the flow and not directly to the density. This can make the approach293

faster than classical models, especially at high density levels.294

Note that the model could be defined in discrete time as well. In this case, if we denote the time step295

by δt, the jump times of the pedestrians are geometrically distributed with parameter p = b δt. The time296

step needs to be chosen such that the Courant–Friedrichs–Lewy (CFL) condition holds, i.e., p = b δt ≤ 1297

(Courant et al.; 1928).298

T0

1

Select cell with
minimal jump time

2

Jump of a pedestrian
t = T0

T ′′
0

. . .
T ′′′
0

T ′
0

3

Update cell jump time
where rate changed

Repeat

Figure 5: Scheme for the simulation of the model. Each hexagon with at least one pedestrian has initially a continuous
jump time T0 > 0. The simulation consists of repeating the three steps: 1. Select cell with minimal jump time; 2. Do
the jump and set the global time to the selected cell’s jump time; 3. Update the jump times of the cells where the rate
changed.

4 Numerical experiments299

In the following, rectangular walkways with a width and a length of approximately 25 and 50 m and pe-300

riodic up/down and right/left boundary conditions are simulated from random initial conditions. Different301

scenarios of uni-directional and counter-flow with or without obstacles are tested. A single pedestrian class302

is considered with parameters v0 = 1.5 m/s, γ = 0.3 m/s and ρjam = 6.667 ped/m2 (see Fig. 2, left panel).303

The system may contain up to 8000 pedestrians at jam density. Three global variables are used to describe304

the performance of the model.305

1. The mean density ρ̄ ∈ [0, ρjam] is defined by306

ρ̄ =
1

K

K∑
k=1

nk/αk, (11)

αk being the area and nk the pedestrian number of hexagon k. K is the number of hexagons in the307

system.308

2. The empirical standard deviation σ̄ ≥ 0 of the density is such that309

σ̄2 =
1

K

K∑
k=1

(nk/α− ρ̄)2. (12)
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3. The mean absolute specific flow J̄ ∈ [0, Q] (i.e. the flow in any direction) is given by310

J̄ =
1

Kκ

K∑
k=1

6∑
i=1

b(nk, ik), (13)

(ik) being the six neighbouring hexagons of hexagon k. Note that the temporal mean flow J̄t = 1
tτ St,311

St being the number of pedestrians leaving a given hexagon during time interval [0, t], tends to the312

asymptotic spatial mean flow J̄ as t→∞ (Cocozza-Thivent; 1997).313

4.1 Fundamental diagram314

The pedestrian dynamics are aggregated when the cell size is large compared to the pedestrian size, i.e. for315

N >> 1. In this case, it is well known that the model dynamics in one dimension tend to the solution of316

the classical deterministic continuity equation of transport as the cell size increases (Eymard et al.; 2012;317

Tordeux et al.; 2014). The results obtained with the bi-dimensional pedestrian model are similar. Snapshots318

of the systems in stationary state (i.e. for simulation time higher than 500,000 s) for a = 1, 2, and 4 m319

(corresponding toN = 17, 69 and 277, respectively) are presented in Fig. 6. The pedestrian distribution tends320

to be uniform as the hexagon size increases. The specific flow and density standard deviation in stationary321

state are plotted as a function of the density in Fig. 7. The flow tends to the deterministic fundamental322

diagram parameter and the density standard deviation tends to zero as α → ∞. Therefore, the variability in323

the system can be controlled by the cell size.324
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Figure 6: Snapshots of uni-directional systems in stationary state for different hexagon sizes for ρ = 2.5 ped/m2

(i.e. ≈ 3000 ped). The density across hexagons tends to be homogeneous as the hexagon size increases.
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Figure 7: Mean specific flow and density standard deviation as a function of the density in the uni-directional systems in
stationary state for different hexagon sizes. The density-flow relationship tends to the deterministic fundamental diagram
and the pedestrian repartition tends to be homogeneous as the hexagon size increases.
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4.2 Congestion and rarefaction due to obstacles325

An obstacle can be included in a cell by limiting the supply and the demand, or it can replace a cell altogether326

by setting these parameters to zero. In the latter case, there is no pedestrian in an obstacle cell and no327

pedestrian can jump into it. Depending on the shape of the weight function for the desired direction w(·),328

congestion can appear upstream to obstacles, and rarefaction can occur downstream (see Fig. 8, left panels).329

If the direction weight w(·) is a constant function, the distribution of the density is uniform even in presence330

of obstacles, and the mean specific flow is the one of a system with no obstacle (see Fig. 8, right panels).331
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Figure 8: Mean density (top panels) and specific flow (bottom panels) for a uni-directional system with obstacles in
stationary state for ρ = 2.5 ped/m2 and a = 2.5 m. The boundaries are periodic. The obstacles generate congestion and
rarefaction when the desired direction is modelled (i.e. for w(x) = 1 + cos(x), left panels), while the state is uniform if
the weight w is constant (right panels).

4.3 Counter-flow and lane formation332

Counter-flows are considered in the following experiments. Half of the pedestrians have the desired direction333

h1 = −π/2, the others having the opposite desired direction h2 = π/2. The initial configuration is random.334

Three experiments are carried out. In the first one, we consider the limit case p0 = 1, while the second335

and third experiments consider friction effects with p0 = 0.5 and p0 = 0.2. No lanes emerge and a gridlock336

appears for p0 = 1, see Fig. 9. Self-organisation of the system in rectilinear lanes by direction is observed for337

p0 = 0.5 and p0 = 0.2 in stationary state (see respectively Figs. 10 and 11). The flow for this configuration338

is close to the uni-directional FD. However, the time required to get lanes can be important when the friction339

is too high (i.e. for too low values of p0). The case p0 ≈ 0 (as the case p0 ≈ 1 with no friction) can even lead340

to gridlocks. Therefore only specific bounds of the fundamental diagram allow for lane formation.341

4.4 Sensitivity analysis342

The specific flow and density standard deviation for the bi-directional system in stationary state are plotted in343

Fig. 12 as a function of the friction parameter p0, the hexagon face length a, and the density ρ (with default344

values p0 = 0.2, a = 2.5 m and ρ = 2.5 ped/m2). 50 experiments are realised for each parameter value.345

Flow and density standard deviation are close to the values observed for a uni-directional system when the346

lanes by direction are present.347

All the three parameters p0, a, and ρ describe a transition for the occurrence of lanes. As already shown348

in Figs. 9 and 11, the threshold p0 has to be sufficiently small for lanes to appear (approximately p0 < 0.6 in349
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Figure 9: Density snapshots and specific flow and density standard deviation sequences for a bi-directional system with
p0 = 1, ρ = 2.5 ped/m2, and a = 2.5 m. Up, down, right and left boundaries are periodic. The absence of friction
between pedestrians in opposing directions does not allow for the emergence of lanes by direction and a gridlock appears.
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Figure 10: Density snapshots and specific flow and density standard deviation sequences for a bi-directional system
with p0 = 0.5, ρ = 2.5 ped/m2, and a = 2.5 m. Up, down, right and left boundaries are periodic. The explicit
consideration of friction between pedestrians in opposing directions in the supply functions allows for the emergence of
lanes by direction.
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Figure 11: Density snapshots and specific flow and density standard deviation sequences for a bi-directional system with
p0 = 0.2, ρ = 2.5 ped/m2, and a = 2.5 m. Up, down, right and left boundaries are periodic. Too high frictions (i.e., too
low values of p0) limit the lane formation and can lead to gridlock.

this example, see Fig. 12, left panels). More precisely, the system still yields gridlocks and the flow is low if350

the friction is too high, i.e. for p0 ≈ 0, while the flow is maximised for approximately p0 = 0.5.351

The lane formation phenomenon also depends on the cell size. As shown in Fig. 12, middle panels,352

lane formation appears if the hexagon size is sufficiently high. For a = 1 m the simulations always yield353

a gridlock while lanes systematically emerge for approximately a ≥ 2 m. As shown in Figs. 6 and 7, the354

variability of the density in the model is controlled by the cell size. Therefore the lane formation appears if355

11



the randomness is sufficiently low. This phenomenon is similar to the ‘freezing by heating’ effect observed356

within microscopic force-based models with additive noise (Helbing et al.; 2000b).357

The density impacts the lane formation (see Fig. 12, right panels). Three states can be identified. For very358

low densities (approximately ρ < 0.5 ped/m2 in this example) both uni and bi-directional systems systemat-359

ically describe similar performances. For intermediate densities (here 0.5 < ρ < 4 ped/m2), lane formation360

occurs but the system may also yield partial gridlocks. Certain density levels (around ρ = 1.8 ped/m2) almost361

always describe the same configuration where 1/3 of the width of the system is gridlocked. Lane formation362

disappears for very large density levels (approximately ρ = 4 ped/m2 in this example, it is ρ = 6 ped/m2 for363

a = 4 m), which is sometimes referred to as break-down of self-organisation. Note that further experiments364

not presented here have been carried out with bigger systems. Similar results have been obtained.365
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Figure 12: Specific flow (top panels) and density standard deviation (bottom panels) for bi-directional systems in sta-
tionary state as a function of p0 (left panels), a (middle panels), and ρ (right panels) (default values p0 = 0.2, a = 2.5
m, ρ = 2.5 ped/m2). 50 experiments have been realised for each parameter value. Continuous lines: Mean value; Grey
areas: Min/max range. Flow and density standard deviations are close to those of a uni-directional system when the lanes
by direction are present.

5 Calibration and validation of the model366

We calibrate and compare the proposed model with real data obtained under laboratory conditions. We first367

estimate model parameters with observations from experiments of uni-directional flows in a closed geometry,368

before evaluating the model with bottleneck, counter- and cross-flow experiments. A cross-validation on369

independent data is then made. Travel and egress times are considered for the validation. The data stems370

mainly from the Hermes collaborative project (2008–2011). Experiments with closed and open geometries,371

bottlenecks and counter-flow have been carried out with up to 400 participants, and trajectories have been372

collected from video recordings (Boltes et al.; 2010). A cross-flow experiment conducted by Plaue et al.373

(2012) is considered in Section 5.4, where also a comparison with a microscopic pedestrian flow model is374

presented.375

5.1 Estimation of model parameters376

The mesoscopic model for uni-directional flow solely depends on the parameters related to the fundamental377

diagram. In the following, a single class of parameter values is estimated. The estimation of parameters for378

multiple pedestrian classes is still an open research topic that exceeds the scope of this work. The parameters379

of the single-class specification are namely the desired speed v0, the shock-wave speed γ, and the jam density380

ρjam, grouped in the vector p = (v0, γ, ρjam). The experiments used for the model calibration were carried381

out in a closed oval geometry with density levels varying from approximately 0.25 to 4 ped/m2 (see Fig. 13).382

Two sets of 7 and 8 experiments were performed on geometries with widths ω1 = 1.4 m and ω2 = 1.8 m with383

respectively N1 = 10, 20, 45, 65, 85, 110, 130 and N2 = 15, 30, 60, 85, 110, 140, 170, 230 participants.384

Pseudo-independent measurements of the specific flow and the density based on the Voronoi smoothing385
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method (Steffen and Seyfried; 2010) are extracted from the trajectories by taking one measurement every 2386

seconds (other sampling intervals varying from 1 to 10 seconds have been tested with similar results). The387

measurement is done in the centre of the geometry to avoid boundary effects with the walls. Altogether,388

K = 719 observations for the pair (Jk, ρk) of specific flow and density are obtained (see Fig. 14, left panel).389

6m

2m

ω

Measurement area

Figure 13: Space configuration of the experiment with uni-directional flows in an oval.

The parameters p = (v0, γ, ρjam) are estimated using the Gauss-Newton non-linear least squares method.390

Such an algorithm is based on the first derivative of the function to optimise. Yet, the derivatives are not391

defined anywhere with a strictly triangular relation. Therefore, we use the smooth triangular relationship392

Jεp(ρ) = ρ εγρjam ln

(
1 + exp

(
− ln

(
1 + exp

(
−1

ε

[
1

ρ
−

1 + v0
γ

ρjam

]))
+

v0
εγρjam

))
. (14)

Such a relation is a smoothed version of the triangular relation Jp(ρ) = min{ρv0,max{0, γ(ρjam − ρ)}} in393

the sense that Jεp(ρ)→ Jp(ρ) as ε→ 0 for any ρ and p. We set ε = 0.005 m2 in the following.394

The estimation of the parameters is a local approximation of the problem395

p̂ = arg min
p

K∑
k=1

(
Jεp(ρk)− Jk

)2
. (15)

The estimates with 0.95 asymptotic confidence intervals are provided in Tab. 1. Various initial parameter396

values have been tested with similar estimates, attesting that a global minimum is reached. The estimations397

are consistent with the ones obtained by Weidmann (1992) (v̂′0 = 1.34 m/s, ρ̂′jam = 5.4 ped/m2 and, after398

linearisation, γ̂′ = 0.47 m/s), or the ones presented by Hänseler, Lam, Bierlaire, Lederrey and Nikolić399

(2017). The histogram of the residuals Jεp(ρk)− Jk is plotted in Fig. 14, right panel. A compact distribution400

with no outliers is visible, corroborating the quality of the estimation.401
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Figure 14: Flow/density measurements and the triangular fitting (left panel). Histogram of the residuals (right panel).
The R-squared coefficient for the estimation is R2 = 0.66 while all the Fisher tests for the parameters are significant.

The flow/density observations and simulation results of the calibrated model with a = 2 m are presented402

in Fig. 15. Similar global trends are observed as can be seen by the curves representing mean values by class403

of density, ranging from 0 to 5 by steps of 0.5 ped/m2. This is not surprising since the model is calibrated404

on this sample of data. It is, however, interesting to observe that the dispersion of the data is relatively well405
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Parameter v0 (m/s) γ (m/s) ρjam (ped/m)Estimation

Least squares estimate 1.14 0.55 4.97
0.95 confidence interval [1.08;1.19] [0.50;0.61] [4.79;5.17]

Table 1: Parameter estimation by non-linear least squares with 0.95 asymptotic confidence intervals.

reproduced as well (see the coloured areas describing the standard deviations around the mean values). Note406

that however, as shown above in Sec. 4, the variability depends on the size of the hexagon.407
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Figure 15: Flow/density observations and simulation results of the calibrated model with a = 2 m. The curves and the
coloured area represent respectively the mean value and the standard deviation by class of density (ranging from 0 to 5
by steps of 0.5 ped/m2).

5.2 Bottleneck experiment408

The calibrated model is tested on bottleneck experiments. The geometry here is open: Pedestrians start from409

a waiting area, cross a corridor that ends in a bottleneck, before leaving the experiment (see Fig. 16). The410

corridor’s width amounts to 1.8 m and its length to 8 m. Three experiments are available with bottleneck411

widths of ω1 = 0.95 m, ω2 = 1.20 m and ω3 = 180 m with respectivelyN1 = 159,N2 = 170 andN3 = 220412

participants initially disposed in the waiting area. Trajectories are recorded within the corridor (see striped413

grey area in Fig. 16).414
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Figure 16: Space configuration of the experiment with uni-directional flows in a bottleneck.

The bottleneck configuration is implemented by a single row of four aligned hexagons. The face of the415

hexagons is a = 1.2 m. The width of the modelled corridor is the one of the experiment (1.8 m) while its416

length is slightly larger (8.31 m instead of 8 m). The bottleneck is modelled by bounding the jump rate for the417

last hexagon according to the bottleneck width as described in Sec. 4. Monte Carlo simulations are carried418

out with the same initial configuration as in the real experiment. The distribution of observed and simulated419

travel times are relatively close (Fig. 17, top panels). Student and Fisher tests are carried out for the mean420

and variance obtained in the data and by simulation (see Table. 2). Except for the variance of the experiment421

with bottleneck width ω = 1.8 m, the tests are not significant. Therefore, with the exception of the latter422

case, one cannot reject the assumption that the mean and variance are statistically the same in the data and in423

the simulation.424

The mean simulated egress times are relatively close to the observed ones (approximately 99 s on average425

for the simulation and 90 s for the experiment for ω1 = 0.95 m, 86 and 82 s for ω2 = 1.2 m and 98 and426

92 s for ω3 = 1.8 m). Since the model is stochastic, the egress times vary in the simulation from one run427
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Figure 17: PDF of the travel times (top panels) and histograms of the simulated egress times (bottom panel) for the
different bottleneck widths. Top panels: The dark grey curves correspond to the simulation while the light grey curves
correspond to the data. Bottom panel: The grey vertical lines are the observed times while the light grey areas correspond
to the 0.95 confidence intervals of the simulations.

ω = 0.95 m ω = 1.2 m ω = 1.8 m

Data Simulation Data Simulation Data Simulation

Mean 18.18 18.60 12.91 12.52 9.18 9.00

Std. dev. 1.49 1.53 1.75 1.88 1.73 1.34

Equality-test Mean Std. dev. Mean Std. dev. Mean Std. dev.
P-value 0.47 0.18 0.27 0.06 0.23 0.00

Table 2: Bottleneck experiment. Mean, standard deviation (in seconds) and p-value of the equality-tests for the travel
time in the data and for the simulation. The numbers of observations are respectively N = 159, 170 and 220.

to another. It is likely also the case in the real experiment. The histograms of the simulated egress times for428

1000 runs are presented in Fig. 17, bottom panels, for the three different bottleneck widths. The observed429

egress time (the dark grey vertical line) is compared to the 0.95 confidence intervals of the simulations (the430

light grey areas). The simulated egress time varies by approximately 20% and the observed times always fall431

within the confidence intervals.432

5.3 Counter-flow experiment433

Counter-flow experiments are investigated to examine the performance of the model in case of multi-directional434

movements. A corridor geometry with two opposite waiting areas is considered. The participants, at the be-435

ginning in one of the lateral waiting areas, have to cross the corridor and leave the experiment on the opposite436

side (see Fig. 18). The corridor width is 3.6 m and its length 8 m. Several experiments with different entrance437

widths ω and different participant numbers are available. We consider here the experiment with an entrance438

width ω = 1.2 m and 300 participants (i.e., 150 on each side). Trajectories at the corridor inlet as well as439

within the corridor have been recorded (see the striped grey area in Fig. 18).440

To model the counter-flow, the same hexagon size and model parametrisation as for the previous exper-441

iment are considered. Simulations are carried out for friction parameter p0 = 0.2, 0.5 and 1. As observed442

in the preliminary simulation results presented in Sec. 4 (see Figs. 9 and 11), lanes per direction emerge for443

p0 = 0.2. Yet this parametrisation also yields temporary gridlocks with large travel and egress times (see444

Fig. 19, left panels). More stable realistic behaviours are obtained for p0 = 0.5 (see Fig. 19, middle panels),445

while the travel and egress times are underestimated and no lanes by direction emerge in the total absence of446

friction in the cell supply (i.e. for p0 = 1), see Fig. 19, right panels. Student and Fisher tests for the mean and447

variance of the travel times in the data and for the simulation are presented in Table 3. The results confirm448

that setting the friction to p0 = 0.5 yields good agreement with the data.449
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Figure 18: Space configuration of the experiment with counter-flows in a corridor.
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Figure 19: PDF of the travel times (top panels) and histograms of the simulated egress times (bottom panel) for p0 = 0.2,
p0 = 0.5 and p0 = 1. Top panels: The dark grey curves correspond to the simulation while the light grey curves
correspond to the data. Bottom panel: The grey vertical lines are the observed times while the light grey areas correspond
to the 0.95 confidence intervals of the simulations.

p0 = 0.2 p0 = 0.5 p0 = 1

Data Simulation Data Simulation Data Simulation

Mean 10.66 9.65 9.48 9.65 7.76 9.65

Std. dev. 1.43 1.13 1.37 1.27 1.54 1.61

Equality-test Mean Std. dev. Mean Std. dev. Mean Std. dev.
P-value 0.00 0.00 0.23 0.1 0.00 0.43

Table 3: Counter-flow experiment. Mean, standard deviation (in seconds) and p-value of the equality-tests for the travel
time in the data and for the simulation. The number of observations is N = 300.

5.4 Cross-flow experiment450

To further investigate the model behaviour, an orthogonal cross-flow experiment is considered. The corre-451

sponding data has been collected by Plaue et al. (2012), and involves two groups of pedestrians consisting452

of 78 and 143 students, respectively. The dimensions of the experimental set-up are shown in Fig. 20. The453

layout is approximated by hexagons of size a = 1.2 m. Pedestrian trajectories are available only within a454

3 m-by-3 m area where the two groups cross, as indicated by the hatched area. The same experiment has455

been analysed with a microscopic cellular automata model by Crociani and Lämmel (2016), which is used456

as a qualitative benchmark.457

Fig. 21 compares the empirically observed sequences of density and mean speed with simulation results458

obtained by the mesoscopic model proposed in this work, and by the aforementioned CA model. Mean459

value and standard deviation sequences are averaged over 50 independent simulations, and as before, three460

different values of the friction parameter are considered, namely p0 = 0.2, 0.5 and 1.461

As in previous considerations, best results are obtained with a friction of p0 = 0.5. For that parametriza-462
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Figure 20: Space configuration of the experiment with crossing flows.

tion, a good agreement with data and the microscopic cellular automaton results. At the onset of the exper-463

iment, an underestimation of speed may be perceived, amounting to v0 = 1.14 m/s instead of the experi-464

mentally observed 1.5 m/s. This could likely be improved by using a more elaborate specification of the465

fundamental density-speed relation. Overall, we consider promising the fact that the proposed mesoscopic466

model yields a comparable performance as a microscopic model.467
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Figure 21: Comparison of measured density and speed sequences to simulation results of the mesoscopic model and of
the microscopic CA model introduced by Crociani and Lämmel (2016). Top panels: Density sequences. Bottom panels:
Mean speed sequences. From left to right: p0 = 0.2, p0 = 0.5 and p0 = 1. Friction parameter p0 = 0.5 yields good
agreement with the data and the CA model.

6 Large-scale simulation468

To show the scalability of the proposed model, a large-scale experiment is performed on a real-world scenario469

involving the Indonesian city of Padang. At a distance of approximately 300 km to the Great Sumatra fault,470

Padang is prone to earthquakes and subsequent tsunamis. The city has more than one million inhabitants, and471

spreads over a low laying area along the shore. Thus, a comprehensive evacuation planning for the so called472

“last-mile” is essential. The evacuation area is defined as the city’s area with an elevation of 10 m or less,473

with a size of roughly 7 × 4 km. The affected population comprises approximately 330,000 individuals who474

evacuate by foot. The size of the scenario is typically too large to be simulated with a microscopic model. A475

corresponding in-depth analysis and planning has been done in the “Last-Mile” project (see e.g. Taubenböck476

et al.; 2013). Part of the project deals with the simulation of the evacuation itself, using a mesoscopic agent-477

based queue simulation model (Lämmel et al.; 2009), which is part of MATSim (Horni et al.; 2016). In the478

following, the Padang evacuation scenario is considered to benchmark the calibrated version of the proposed479

mesoscopic model against the aforementioned large-scale agent-based simulator.480
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The queue model by Lämmel et al. (2009) considers link-wise flow capacity restrictions, and exhibits a481

trapezoidal fundamental diagram with a capacity regime that reaches from medium densities to almost jam482

density. This stands in contrast to real-world observations, resembling rather triangular-shaped fundamental483

diagrams. Consequently, the queue model is known to overestimate the flow at high densities, which might484

lead to a high overall throughput and thus unrealistically short evacuation times.485

Evacuation planning usually requires the application of routing strategies. Routes are best represented486

on a graph-like structure. Thus the proposed model has to be mapped on a graph. An obvious approach is to487

map the intersections of the street network to nodes and the street segments in between intersections to links.488

In principle, one could overlay the street network onto a hexagonal grid of the size of the network’s bounding489

box and then “punch out” the walkable area. However, by doing so the hexagonal grid would not be aligned490

with the links and thus two links with the same physical dimension but different alignment might display491

different flow dynamics. In order to avoid such artefacts, the hexagonal grid is modelled individually for492

each link, i.e., the cells are always aligned with the underlying link. The nodes of the network are modelled493

as irregular cells with an area proportional to the width of the adjacent links as illustrated in Fig. 22. The494

faces of such node cells are connected to the cells at the boundary (green cells in Fig. 22) of the adjacent495

links. A map section of the city and an illustration of the mapping to the network model is depicted in Fig. 23.496

The overall network consists of 6289 nodes and 16978 links.497

l1

l2

l3

l4c

Figure 22: Illustration of the network model. The three links (l1, l2, l3) are connected via the irregular cell c.

Figure 23: Large-scale scenario. Map section of the evacuation area and an illustration how the streets are mapped to
the network model.
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As the number of pedestrians and size of the area are fixed, the computational burden largely depends on498

the number of jumps each pedestrian performs on their journey. The number of required jumps is proportional499

to the number of hexagonal cells. Thus, reducing the number of cells (by increasing their size) will reduce500

the computational burden. As it has been shown in Fig. 7, the cell size (with a ≥ 1 m) has no substantial501

impact on unidirectional flow, as it is prevalent during evacuation. To ensure that the simulated pedestrians502

are able to reach their desired speed v0, it is required that503

N ≥ 1 +
v0
γ
, (16)

where N is the maximum number of pedestrians per cell. Based on Eq. (16), a simulation environment504

consisting of 935,888 hexagonal cells is obtained.505

It is assumed that pedestrians evacuate to the closest safe destination, pursuing the shortest path in time506

according to a Nash equilibrium (Nash; 1951). For a discussion of the Nash equilibrium in the context of507

evacuation, we refer the interested reader to Lämmel (2011). Simulation results are provided in Fig. 24,508

showing the cumulative arrivals of evacuees over time.509

The average evacuation time for the queue model and the present model amount to 31:34 min and510

35:24 min, respectively. The overall dynamics of the evacuation process are similar, as can be perceived511

by the almost linear slope in Fig. 24. These findings are in keeping with expectations. Reasons for the512

marginally lower evacuation speed in the stochastic model include differences in the underlying flow dynam-513

ics that are arguably more accurate (as discussed at the beginning of this section), as well as the fact that it514

has been calibrated based on laboratory experiments (see Sec. 5.1). In the case of an actual evacuation, at515

least free-flow speeds would likely be larger than under experimental conditions. In fact, in the queue-model516

a free-flow speed of 1.66 m/s has been assumed, in contrast to only 1.14 m/s in this work.517
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Figure 24: Evacuation times in the large-scale experiment. Evacuation curves as obtained with the present and the queue
simulation model (Lämmel; 2011, Chapter 4).

A single iteration of the Padang scenario can be computed faster than real-time with both models1. The518

actual computation time varies depending on the computer architecture. The queue model is roughly one519

order of magnitude faster. In return, the dynamics provided by the present model are substantially richer and520

presumably more realistic, while still being efficient enough to consider large-scale scenarios.521

7 Conclusion522

The proposed pedestrian flow model is one of only few mesoscopic models for describing pedestrian dynam-523

ics in two dimensions. Most importantly, unlike point queue models, our model can describe space utilization524

and volume exclusion of pedestrians explicitly. It can inherently reproduce stochasticity and, in principle,525

population heterogeneity in terms of individual walking behavior, which both are important advantages over526

existing macroscopic models. Compared to microscopic approaches such as the Social Force model, it typi-527

cally incurs lower computational costs, making it applicable to large-scale problems. Moreover, the number528

of parameters is, depending on the specification, lower, allowing for an effective calibration on real data.529

Even when using a minimal model specification, the model is capable of reproducing various key phenom-530

ena of pedestrian dynamics, such as shock- and rarefaction waves in presence of obstacles, or lane formation531

1The approximation of a Nash equilibrium usually requires several hundred iterations.
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in counter-flow. A comparison of model predictions with empirical data yields for various experiments a532

good agreement, both in absolute terms and if contrasted with a related microscopic modelling approach.533

Various possibilities for further improvement exist. More elaborate specifications of the friction in the534

supply function, or of the density-speed relationship (e.g. to capture anisotropy Hänseler, Lam, Bierlaire,535

Lederrey and Nikolić; 2017) can be envisaged. More importantly, the presented model can be combined with536

an en-route path choice model to explicitly model the desired walking direction, instead of considering it as537

an exogenous parameter. We leave this for future research.538
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Appendix: Computational complexity of the model700

The calculation of the jump rate b involves the computation of flows J , see Eqs. (3) and (7), and of destination factorsD,701

see Eq. (4). The calculation of J requires to determine the pedestrian class c and a few operations with four comparisons.702

This represents approximately CJ = 10 operations. The identification of the desired direction requires the calculation of703

a cosine within the weight function ω, and the flow for each of the accessible neighbours, i.e. at most 6. The computation704

of a cosine requires approximately CD = 35 operations. The calculation may be reduced by storing the weight in a705

look-up table. In total, the computation of the jump rate b requires about Cb = 6(CJ + CD) operations per class.706

After the calculation of the jump rate, the time for the next jump is computed from a pseudo-random variable707

generator. For an exponential distribution, this takes about Cr = 40 operations. The jump times are ordered in a708

list to successively get the minimal times. With standard sorting, it requires about 5 ln(Kds) operations to find the709

position, and about Kds/3 operations to shift the tail of the event list, K being the number of cells and d the number710

of desired directions among the pedestrians and s the number of classes. Therefore the event-based update needs Ce =711

5 ln(Kds) + Kds/3 operations per jump. For large systems, this will be the dominant load. In the worst case, 10712

neighbours have to be updated at each jump and all the d desired destinations are systematically affected. In such a case,713

a jump needs 10d
(
6(CJ + CD) + Cr + Ce

)
operations per class.714

The frequency of the jumps depends on the jump rates which depend themselves on the density through the funda-715

mental diagram Jρ. The complexity by unit of time for the simulation of the model is hence716

C(ρ,K, d, s) = 10KdsκJρ
(
Cb + Cr + 5 ln(Kds) +Kds/3

)
. (A1)

The capacity of current portable computers is about 6 ·108 operations per second. If we consider a single pedestrian class717

in an evacuation scenario for which d = 1 and that hexagonal cells have size a = 2.5 m then the model can be simulated718

in real time for at least K = 5000. Such systems represent respectively about 150,000 pedestrians at a critical density719

level where the flow is maximal, and can contain up to 500,000 pedestrians at jam density.720

Inserting new jump times in the ordered list of events is the most costly part of the procedure when the size of the721

system is large. Yet it can be speeded up. Simply having an ordered list of events and inserting a new event at the proper722

place requires a number of operations proportional to the the number of cells K. Organising the event list as a self723
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balancing binary tree gives a complexity of O(lnK) for the insertion of a new event as well as for finding the next event724

to treat. In such a case, a system with K cells and mean density level ρ has the complexity of O(JρK lnK), Jρ being725

the mean flow. The fastest microscopic pedestrian model known to the authors is a cellular automata model (CA) with726

random sequential ordering (Steffen and Chraibi; 2014) which has a complexity of O(ρK ln(ρK). For a macroscopic727

model, the number of calculations per unit of time depends on the number of cells and does not depend on the density.728

The complexity is O(K).729

A comparative experiment is carried out with a microscopic model (namely the totally asymmetric exclusion process730

(TASEP) with sequential update (Liggett; 1985; Steffen and Chraibi; 2014)), the mesoscopic approach, and the cell731

transmission (CT) macroscopic model (Daganzo; 1994). A periodic uni-dimensional system that can contain up to 5,000732

pedestrians is simulated during time T = 3,600. The time step in the microscopic and macroscopic model are set to733

the unit while the cell in the mesoscopic and macroscopic models can contain up to 40 pedestrians. The models are all734

based on the identical triangular fundamental diagram J(x) = min{x, 1 − x}, with x ∈ [0, 1] the concentration. The735

simulations are done with the software NetLogo (Wilensky; 1999) on a 2.7 GHz processor.736

The computation times according to the concentration are presented in Fig. 25. As expected, the simulation time737

monotonically increases with the density for the microscopic model, while it is proportional to the flow for the continuous738

time approach and constant for the macroscopic model. The mesoscopic model is more efficient than the microscopic739

one for any density level, and than the macroscopic model for low and high density levels. In the worst case (at the740

critical density level), the mesoscopic model is approximately three times slower than the macroscopic model.741
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Figure 25: Computation times for the simulation of the periodic uni-dimensional system during a simulation T = 3,600
with the microscopic TASEP model, the mesoscopic approach and the CT macroscopic model.

24


	Introduction
	Literature review
	A mesoscopic pedestrian model
	Definition of the model
	Uni-directional case
	Multi-directional case

	Stationary distribution
	Simulation-based formulation

	Numerical experiments
	Fundamental diagram
	Congestion and rarefaction due to obstacles
	Counter-flow and lane formation
	Sensitivity analysis

	Calibration and validation of the model
	Estimation of model parameters
	Bottleneck experiment
	Counter-flow experiment
	Cross-flow experiment

	Large-scale simulation
	Conclusion

