000848119 001__ 848119 000848119 005__ 20240712084554.0 000848119 0247_ $$2doi$$a10.1021/acs.inorgchem.8b00463 000848119 0247_ $$2ISSN$$a0020-1669 000848119 0247_ $$2ISSN$$a1520-510X 000848119 0247_ $$2pmid$$apmid:29714481 000848119 0247_ $$2WOS$$aWOS:000433013600026 000848119 0247_ $$2altmetric$$aaltmetric:42195017 000848119 037__ $$aFZJ-2018-03395 000848119 082__ $$a540 000848119 1001_ $$0P:(DE-HGF)0$$aMurphy, Gabriel L.$$b0 000848119 245__ $$aUnexpected Crystallographic Phase Transformation in Nonstoichiometric SrUO 4– x : Reversible Oxygen Defect Ordering and Symmetry Lowering with Increasing Temperature 000848119 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018 000848119 3367_ $$2DRIVER$$aarticle 000848119 3367_ $$2DataCite$$aOutput Types/Journal article 000848119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599628014_20284 000848119 3367_ $$2BibTeX$$aARTICLE 000848119 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000848119 3367_ $$00$$2EndNote$$aJournal Article 000848119 520__ $$aIn situ synchrotron powder X-ray diffraction measurements have demonstrated that SrUO4 undergoes a reversible phase transformation under reducing conditions at high temperatures, associated with the ordering of oxygen defects resulting in a lowering of crystallographic symmetry. When substoichiometric rhombohedral α-SrUO4–x, in space group R3̅m with disordered in-plane oxygen defects, is heated above 200 °C in a hydrogen atmosphere it undergoes a first order phase transformation to a (disordered) triclinic polymorph, δ-SrUO4–x, in space group P1̅. Continued heating to above 450 °C results in the appearance of superlattice reflections, due to oxygen-vacancy ordering forming an ordered structure δ-SrUO4–x. Cooling δ-SrUO4–x toward room temperature results in the reformation of the rhombohedral phase α-SrUO4–x with disordered defects, confirming the reversibility of the transformation. This suggests that the transformation, resulting from oxygen vacancy ordering, is not a consequence of sample reduction or decomposition, but rather represents a change in the energetics of the system. A strong reducing atmosphere is required to generate a critical amount of oxygen defects in α-SrUO4–x to enable the transformation to δ-SrUO4–x but once formed the transformation between these two phases can be induced by thermal cycling. The structure of δ-SrUO4–x at 1000 °C was determined using symmetry representation analysis, with the additional reflections indexed to a commensurate distortion vector k = ⟨1/4 1/4 3/4⟩. The ordered 2D layered triclinic structure of δ-SrUO4–x can be considered a structural distortion of the disordered 2D layered rhombohedral α-SrUO4–x structure through the preferential rearrangement of the in-plane oxygen vacancies. Ab initio calculations using density functional theory with self-consistently derived Hubbard U parameter support the assigned ordered defect superstructure model. Entropy changes associated with the temperature dependent short-range ordering of the reduced U species are believed to be important and these are discussed with respect to the results of the ab initio calculations. 000848119 536__ $$0G:(DE-HGF)POF3-161$$a161 - Nuclear Waste Management (POF3-161)$$cPOF3-161$$fPOF III$$x0 000848119 536__ $$0G:(DE-Juel1)jara0037_20181101$$aAtomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste. (jara0037_20181101)$$cjara0037_20181101$$fAtomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste.$$x1 000848119 536__ $$0G:(DE-Juel1)jara0038_20121101$$aInvestigation of the new materials for safe management of high level nuclear waste. (jara0038_20121101)$$cjara0038_20121101$$fInvestigation of the new materials for safe management of high level nuclear waste.$$x2 000848119 588__ $$aDataset connected to CrossRef 000848119 7001_ $$0P:(DE-HGF)0$$aWang, Chun-Hai$$b1 000848119 7001_ $$0P:(DE-Juel1)156345$$aBeridze, George$$b2 000848119 7001_ $$0P:(DE-HGF)0$$aZhang, Zhaoming$$b3 000848119 7001_ $$0P:(DE-HGF)0$$aKimpton, Justin A.$$b4 000848119 7001_ $$00000-0003-2366-5809$$aAvdeev, Maxim$$b5 000848119 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr$$b6 000848119 7001_ $$00000-0002-7187-4579$$aKennedy, Brendan J.$$b7$$eCorresponding author 000848119 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.8b00463$$gVol. 57, no. 10, p. 5948 - 5958$$n10$$p5948 - 5958$$tInorganic chemistry$$v57$$x1520-510X$$y2018 000848119 8564_ $$uhttps://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.pdf$$yRestricted 000848119 8564_ $$uhttps://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.gif?subformat=icon$$xicon$$yRestricted 000848119 8564_ $$uhttps://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000848119 8564_ $$uhttps://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.jpg?subformat=icon-180$$xicon-180$$yRestricted 000848119 8564_ $$uhttps://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.jpg?subformat=icon-640$$xicon-640$$yRestricted 000848119 909CO $$ooai:juser.fz-juelich.de:848119$$pVDB 000848119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b6$$kFZJ 000848119 9131_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0 000848119 9141_ $$y2018 000848119 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000848119 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2015 000848119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000848119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000848119 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000848119 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000848119 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000848119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000848119 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000848119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000848119 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000848119 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000848119 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000848119 920__ $$lyes 000848119 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0 000848119 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1 000848119 980__ $$ajournal 000848119 980__ $$aVDB 000848119 980__ $$aI:(DE-Juel1)IEK-6-20101013 000848119 980__ $$aI:(DE-82)080012_20140620 000848119 980__ $$aUNRESTRICTED 000848119 981__ $$aI:(DE-Juel1)IFN-2-20101013