001     848119
005     20240712084554.0
024 7 _ |a 10.1021/acs.inorgchem.8b00463
|2 doi
024 7 _ |a 0020-1669
|2 ISSN
024 7 _ |a 1520-510X
|2 ISSN
024 7 _ |a pmid:29714481
|2 pmid
024 7 _ |a WOS:000433013600026
|2 WOS
024 7 _ |a altmetric:42195017
|2 altmetric
037 _ _ |a FZJ-2018-03395
082 _ _ |a 540
100 1 _ |a Murphy, Gabriel L.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unexpected Crystallographic Phase Transformation in Nonstoichiometric SrUO 4– x : Reversible Oxygen Defect Ordering and Symmetry Lowering with Increasing Temperature
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599628014_20284
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In situ synchrotron powder X-ray diffraction measurements have demonstrated that SrUO4 undergoes a reversible phase transformation under reducing conditions at high temperatures, associated with the ordering of oxygen defects resulting in a lowering of crystallographic symmetry. When substoichiometric rhombohedral α-SrUO4–x, in space group R3̅m with disordered in-plane oxygen defects, is heated above 200 °C in a hydrogen atmosphere it undergoes a first order phase transformation to a (disordered) triclinic polymorph, δ-SrUO4–x, in space group P1̅. Continued heating to above 450 °C results in the appearance of superlattice reflections, due to oxygen-vacancy ordering forming an ordered structure δ-SrUO4–x. Cooling δ-SrUO4–x toward room temperature results in the reformation of the rhombohedral phase α-SrUO4–x with disordered defects, confirming the reversibility of the transformation. This suggests that the transformation, resulting from oxygen vacancy ordering, is not a consequence of sample reduction or decomposition, but rather represents a change in the energetics of the system. A strong reducing atmosphere is required to generate a critical amount of oxygen defects in α-SrUO4–x to enable the transformation to δ-SrUO4–x but once formed the transformation between these two phases can be induced by thermal cycling. The structure of δ-SrUO4–x at 1000 °C was determined using symmetry representation analysis, with the additional reflections indexed to a commensurate distortion vector k = ⟨1/4 1/4 3/4⟩. The ordered 2D layered triclinic structure of δ-SrUO4–x can be considered a structural distortion of the disordered 2D layered rhombohedral α-SrUO4–x structure through the preferential rearrangement of the in-plane oxygen vacancies. Ab initio calculations using density functional theory with self-consistently derived Hubbard U parameter support the assigned ordered defect superstructure model. Entropy changes associated with the temperature dependent short-range ordering of the reduced U species are believed to be important and these are discussed with respect to the results of the ab initio calculations.
536 _ _ |a 161 - Nuclear Waste Management (POF3-161)
|0 G:(DE-HGF)POF3-161
|c POF3-161
|f POF III
|x 0
536 _ _ |a Atomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste. (jara0037_20181101)
|0 G:(DE-Juel1)jara0037_20181101
|c jara0037_20181101
|f Atomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste.
|x 1
536 _ _ |a Investigation of the new materials for safe management of high level nuclear waste. (jara0038_20121101)
|0 G:(DE-Juel1)jara0038_20121101
|c jara0038_20121101
|f Investigation of the new materials for safe management of high level nuclear waste.
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Chun-Hai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Beridze, George
|0 P:(DE-Juel1)156345
|b 2
700 1 _ |a Zhang, Zhaoming
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kimpton, Justin A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Avdeev, Maxim
|0 0000-0003-2366-5809
|b 5
700 1 _ |a Kowalski, Piotr
|0 P:(DE-Juel1)137024
|b 6
700 1 _ |a Kennedy, Brendan J.
|0 0000-0002-7187-4579
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acs.inorgchem.8b00463
|g Vol. 57, no. 10, p. 5948 - 5958
|0 PERI:(DE-600)1484438-2
|n 10
|p 5948 - 5958
|t Inorganic chemistry
|v 57
|y 2018
|x 1520-510X
856 4 _ |u https://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848119/files/acs.inorgchem.8b00463.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:848119
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)137024
913 1 _ |a DE-HGF
|l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung
|1 G:(DE-HGF)POF3-160
|0 G:(DE-HGF)POF3-161
|2 G:(DE-HGF)POF3-100
|v Nuclear Waste Management
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INORG CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21