001     848160
005     20210129234006.0
037 _ _ |a FZJ-2018-03426
041 _ _ |a English
100 1 _ |a Kleefeld, Andreas
|0 P:(DE-Juel1)169421
|b 0
|e Corresponding author
|u fzj
111 2 _ |a SIAM Conference on Imaging Science 2018
|c Bologna
|d 2018-06-05 - 2018-06-08
|w Italy
245 _ _ |a Mathematical morphology for multispectral images
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1528796427_22830
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The processing of multispectral images is a challenging task due to the fact that the pixel content is vectorial and the definition of an order is difficult. A new geometrical framework based on double hypersimplices and the Loewner ordering is illustrated to define the two fundamental operations dilation and erosion for multispectral images. These are the two main building blocks of mathematical morphology to define higher morphological operations such as top hats, gradients, and the morphological Laplacian. Numerical results are given to show the advantages and shortcomings of the new proposed approach.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
909 C O |o oai:juser.fz-juelich.de:848160
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169421
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21