000848186 001__ 848186 000848186 005__ 20210129234016.0 000848186 0247_ $$2doi$$a10.1137/16M1073959 000848186 0247_ $$2ISSN$$a0196-5204 000848186 0247_ $$2ISSN$$a1064-8275 000848186 0247_ $$2ISSN$$a1095-7197 000848186 0247_ $$2Handle$$a2128/18893 000848186 0247_ $$2WOS$$aWOS:000436986000039 000848186 037__ $$aFZJ-2018-03452 000848186 041__ $$aEnglish 000848186 082__ $$a004 000848186 1001_ $$0P:(DE-HGF)0$$aBolten, M.$$b0$$eCorresponding author 000848186 245__ $$aFourier Analysis of Periodic Stencils in Multigrid Methods 000848186 260__ $$aPhiladelphia, Pa.$$bSIAM$$c2018 000848186 3367_ $$2DRIVER$$aarticle 000848186 3367_ $$2DataCite$$aOutput Types/Journal article 000848186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528809079_23107 000848186 3367_ $$2BibTeX$$aARTICLE 000848186 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000848186 3367_ $$00$$2EndNote$$aJournal Article 000848186 520__ $$aMany applications require the numerical solution of a partial differential equation (PDE), leading to large and sparse linear systems. Often a multigrid method can solve these systems efficiently. To adapt a multigrid method to a given problem, local Fourier analysis (LFA) can be used. It provides quantitative predictions about the behavior of the components of a multigrid method. In this paper we generalize LFA to handle what we call periodic stencils. An operator given by a periodic stencil has a block Fourier symbol representation. It gives a way to compute the spectral radius and norm of the operator. Furthermore block Fourier symbols can be used to find out how an operator acts on smooth/oscillatory input and whether its output will be smooth/oscillatory. This information can then be used to construct efficient smoothers and coarse grid corrections. We consider a particular PDE with jumping coefficients and show that it leads to a periodic stencil. LFA shows that the Jacobi method is a suitable smoother for this problem and an operator dependent interpolation is better than linear interpolation, as suggested by numerical experiments described in the literature. If an operator is given by an ordinary stencil, then block smoothers yield periodic stencils if the blocks correspond to rectangles in the domain. LFA shows that the block Jacobi and the red-black block Jacobi method efficiently reduce more frequencies than their pointwise versions. Further, it yields that a block smoother used in combination with aggressive coarsening can to some degree compensate for the reduced convergence rate caused by aggressive coarsening. 000848186 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000848186 536__ $$0G:(GEPRIS)214420555$$aSPPEXA - Software for Exascale Computing (214420555)$$c214420555$$x1 000848186 588__ $$aDataset connected to CrossRef 000848186 7001_ $$0P:(DE-Juel1)174446$$aRittich, Hannah$$b1 000848186 773__ $$0PERI:(DE-600)1468391-x$$a10.1137/16M1073959$$gVol. 40, no. 3, p. A1642 - A1668$$n3$$pA1642-A1668$$tSIAM journal on scientific computing$$v40$$x1095-7197$$y2018 000848186 8564_ $$uhttps://juser.fz-juelich.de/record/848186/files/BRFourier2018.pdf$$yOpenAccess 000848186 8564_ $$uhttps://juser.fz-juelich.de/record/848186/files/BRFourier2018.gif?subformat=icon$$xicon$$yOpenAccess 000848186 8564_ $$uhttps://juser.fz-juelich.de/record/848186/files/BRFourier2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000848186 8564_ $$uhttps://juser.fz-juelich.de/record/848186/files/BRFourier2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000848186 8564_ $$uhttps://juser.fz-juelich.de/record/848186/files/BRFourier2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000848186 909CO $$ooai:juser.fz-juelich.de:848186$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000848186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174446$$aForschungszentrum Jülich$$b1$$kFZJ 000848186 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000848186 9141_ $$y2018 000848186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000848186 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000848186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSIAM J SCI COMPUT : 2015 000848186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000848186 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000848186 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000848186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000848186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000848186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000848186 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000848186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000848186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000848186 920__ $$lyes 000848186 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000848186 980__ $$ajournal 000848186 980__ $$aVDB 000848186 980__ $$aUNRESTRICTED 000848186 980__ $$aI:(DE-Juel1)JSC-20090406 000848186 9801_ $$aFullTexts