001     848186
005     20210129234016.0
024 7 _ |a 10.1137/16M1073959
|2 doi
024 7 _ |a 0196-5204
|2 ISSN
024 7 _ |a 1064-8275
|2 ISSN
024 7 _ |a 1095-7197
|2 ISSN
024 7 _ |a 2128/18893
|2 Handle
024 7 _ |a WOS:000436986000039
|2 WOS
037 _ _ |a FZJ-2018-03452
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Bolten, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Fourier Analysis of Periodic Stencils in Multigrid Methods
260 _ _ |a Philadelphia, Pa.
|c 2018
|b SIAM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1528809079_23107
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many applications require the numerical solution of a partial differential equation (PDE), leading to large and sparse linear systems. Often a multigrid method can solve these systems efficiently. To adapt a multigrid method to a given problem, local Fourier analysis (LFA) can be used. It provides quantitative predictions about the behavior of the components of a multigrid method. In this paper we generalize LFA to handle what we call periodic stencils. An operator given by a periodic stencil has a block Fourier symbol representation. It gives a way to compute the spectral radius and norm of the operator. Furthermore block Fourier symbols can be used to find out how an operator acts on smooth/oscillatory input and whether its output will be smooth/oscillatory. This information can then be used to construct efficient smoothers and coarse grid corrections. We consider a particular PDE with jumping coefficients and show that it leads to a periodic stencil. LFA shows that the Jacobi method is a suitable smoother for this problem and an operator dependent interpolation is better than linear interpolation, as suggested by numerical experiments described in the literature. If an operator is given by an ordinary stencil, then block smoothers yield periodic stencils if the blocks correspond to rectangles in the domain. LFA shows that the block Jacobi and the red-black block Jacobi method efficiently reduce more frequencies than their pointwise versions. Further, it yields that a block smoother used in combination with aggressive coarsening can to some degree compensate for the reduced convergence rate caused by aggressive coarsening.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a SPPEXA - Software for Exascale Computing (214420555)
|0 G:(GEPRIS)214420555
|c 214420555
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rittich, Hannah
|0 P:(DE-Juel1)174446
|b 1
773 _ _ |a 10.1137/16M1073959
|g Vol. 40, no. 3, p. A1642 - A1668
|0 PERI:(DE-600)1468391-x
|n 3
|p A1642-A1668
|t SIAM journal on scientific computing
|v 40
|y 2018
|x 1095-7197
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/848186/files/BRFourier2018.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/848186/files/BRFourier2018.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/848186/files/BRFourier2018.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/848186/files/BRFourier2018.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/848186/files/BRFourier2018.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:848186
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174446
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SIAM J SCI COMPUT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21