000848194 001__ 848194
000848194 005__ 20220930130150.0
000848194 0247_ $$2doi$$a10.3389/fpls.2018.00773
000848194 0247_ $$2Handle$$a2128/18901
000848194 0247_ $$2pmid$$apmid:29930567
000848194 0247_ $$2WOS$$aWOS:000434388900001
000848194 037__ $$aFZJ-2018-03460
000848194 082__ $$a570
000848194 1001_ $$0P:(DE-Juel1)5963$$aBühler, Jonas$$b0
000848194 245__ $$aModel-Based Design of Long-Distance Tracer Transport Experiments in Plants
000848194 260__ $$aLausanne$$bFrontiers Media88991$$c2018
000848194 3367_ $$2DRIVER$$aarticle
000848194 3367_ $$2DataCite$$aOutput Types/Journal article
000848194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547623486_18954
000848194 3367_ $$2BibTeX$$aARTICLE
000848194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848194 3367_ $$00$$2EndNote$$aJournal Article
000848194 520__ $$aStudies of long-distance transport of tracer isotopes in plants offer a high potential for functional phenotyping, but so far measurement time is a bottleneck because continuous time series of at least 1 h are required to obtain reliable estimates of transport properties. Hence, usual throughput values are between 0.5 and 1 samples h−1. Here, we propose to increase sample throughput by introducing temporal gaps in the data acquisition of each plant sample and measuring multiple plants one after each other in a rotating scheme. In contrast to common time series analysis methods, mechanistic tracer transport models allow the analysis of interrupted time series. The uncertainties of the model parameter estimates are used as a measure of how much information was lost compared to complete time series. A case study was set up to systematically investigate different experimental schedules for different throughput scenarios ranging from 1 to 12 samples h−1. Selected designs with only a small amount of data points were found to be sufficient for an adequate parameter estimation, implying that the presented approach enables a substantial increase of sample throughput. The presented general framework for automated generation and evaluation of experimental schedules allows the determination of a maximal sample throughput and the respective optimal measurement schedule depending on the required statistical reliability of data acquired by future experiments.
000848194 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000848194 588__ $$aDataset connected to CrossRef
000848194 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b1
000848194 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b2$$eCorresponding author
000848194 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2018.00773$$gVol. 9, p. 773$$p773$$tFrontiers in Functional Plant Ecology$$v9$$x1664-462X$$y2018
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/2018-0117583-3.pdf
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/2018-0117583-3.gif?subformat=icon$$xicon
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/2018-0117583-3.jpg?subformat=icon-1440$$xicon-1440
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/2018-0117583-3.jpg?subformat=icon-180$$xicon-180
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/2018-0117583-3.jpg?subformat=icon-640$$xicon-640
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/fpls-09-00773.pdf$$yOpenAccess
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/fpls-09-00773.gif?subformat=icon$$xicon$$yOpenAccess
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/fpls-09-00773.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/fpls-09-00773.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000848194 8564_ $$uhttps://juser.fz-juelich.de/record/848194/files/fpls-09-00773.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000848194 8767_ $$82018-0117583-3$$92018-06-08$$d2018-06-12$$eAPC$$jDeposit$$lDeposit: Frontiers$$zStatement: May 2018
000848194 909CO $$ooai:juser.fz-juelich.de:848194$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000848194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5963$$aForschungszentrum Jülich$$b0$$kFZJ
000848194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b1$$kFZJ
000848194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b2$$kFZJ
000848194 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000848194 9141_ $$y2018
000848194 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848194 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000848194 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848194 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000848194 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000848194 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000848194 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000848194 980__ $$ajournal
000848194 980__ $$aVDB
000848194 980__ $$aI:(DE-Juel1)IBG-1-20101118
000848194 980__ $$aI:(DE-Juel1)IBG-2-20101118
000848194 980__ $$aAPC
000848194 980__ $$aUNRESTRICTED
000848194 9801_ $$aAPC
000848194 9801_ $$aFullTexts