001     848194
005     20220930130150.0
024 7 _ |a 10.3389/fpls.2018.00773
|2 doi
024 7 _ |a 2128/18901
|2 Handle
024 7 _ |a pmid:29930567
|2 pmid
024 7 _ |a WOS:000434388900001
|2 WOS
037 _ _ |a FZJ-2018-03460
082 _ _ |a 570
100 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)5963
|b 0
245 _ _ |a Model-Based Design of Long-Distance Tracer Transport Experiments in Plants
260 _ _ |a Lausanne
|c 2018
|b Frontiers Media88991
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547623486_18954
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Studies of long-distance transport of tracer isotopes in plants offer a high potential for functional phenotyping, but so far measurement time is a bottleneck because continuous time series of at least 1 h are required to obtain reliable estimates of transport properties. Hence, usual throughput values are between 0.5 and 1 samples h−1. Here, we propose to increase sample throughput by introducing temporal gaps in the data acquisition of each plant sample and measuring multiple plants one after each other in a rotating scheme. In contrast to common time series analysis methods, mechanistic tracer transport models allow the analysis of interrupted time series. The uncertainties of the model parameter estimates are used as a measure of how much information was lost compared to complete time series. A case study was set up to systematically investigate different experimental schedules for different throughput scenarios ranging from 1 to 12 samples h−1. Selected designs with only a small amount of data points were found to be sufficient for an adequate parameter estimation, implying that the presented approach enables a substantial increase of sample throughput. The presented general framework for automated generation and evaluation of experimental schedules allows the determination of a maximal sample throughput and the respective optimal measurement schedule depending on the required statistical reliability of data acquired by future experiments.
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 1
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 2
|e Corresponding author
773 _ _ |a 10.3389/fpls.2018.00773
|g Vol. 9, p. 773
|0 PERI:(DE-600)2711035-7
|p 773
|t Frontiers in Functional Plant Ecology
|v 9
|y 2018
|x 1664-462X
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/2018-0117583-3.pdf
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/2018-0117583-3.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/2018-0117583-3.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/2018-0117583-3.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/2018-0117583-3.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/fpls-09-00773.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/fpls-09-00773.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/fpls-09-00773.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/fpls-09-00773.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/848194/files/fpls-09-00773.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:848194
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5963
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129333
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|2 G:(DE-HGF)POF3-500
|v Innovative Synergisms
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer Review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21