000848218 001__ 848218
000848218 005__ 20240708132802.0
000848218 0247_ $$2doi$$a10.1002/admi.201701531
000848218 0247_ $$2WOS$$aWOS:000442489600001
000848218 037__ $$aFZJ-2018-03480
000848218 041__ $$aEnglish
000848218 082__ $$a540
000848218 1001_ $$0P:(DE-HGF)0$$aHufnagel, Alexander$$b0
000848218 245__ $$aElectron‐Blocking and Oxygen Evolution Catalyst Layers by Plasma‐Enhanced Atomic Layer Deposition of Nickel Oxide
000848218 260__ $$aWeinheim$$bWiley-VCH$$c2018
000848218 3367_ $$2DRIVER$$aarticle
000848218 3367_ $$2DataCite$$aOutput Types/Journal article
000848218 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536571625_25366
000848218 3367_ $$2BibTeX$$aARTICLE
000848218 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848218 3367_ $$00$$2EndNote$$aJournal Article
000848218 520__ $$aA plasma‐enhanced atomic layer deposition (ALD) process is presented, capable of producing thin conformal films of nickel(II) oxide (NiO) on various substrates. Nickelocene (NiCp2) is used as an inexpensive metal precursor with oxygen plasma as the oxidant. The film growth rate saturates with both nickel precursor and plasma exposure. An ALD window is observed between 225 and 275 °C. Linear growth is achieved at 250 °C with a growth rate of 0.042 nm per cycle. The thickness is highly uniform and the surface roughness is below 1 nm rms for 52 nm thick films on Si(100). Substrates with aspect ratios up to 1:10 can be processed. As‐deposited, the films consist of polycrystalline, cubic NiO, and are transparent over the entire visible range with an optical bandgap of 3.7 eV. The films consist of stoichiometric NiO and contain ≈1% of carbon impurities. Two promising applications of these films are showcased in renewable energy conversion and storage devices: The films are pinhole‐free and exhibit excellent electron blocking capabilities, making them potential hole‐selective contact layers in solar cells. Also, high electrocatalytic activity of ultrathin NiO films is demonstrated for the alkaline oxygen evolution reaction, especially in electrolytes containing Fe3+.
000848218 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000848218 7001_ $$0P:(DE-HGF)0$$aAnn‐Kathrin Henß$$b1
000848218 7001_ $$0P:(DE-HGF)0$$aHoffmann, Ramona$$b2
000848218 7001_ $$0P:(DE-HGF)0$$aZeman, Otto$$b3
000848218 7001_ $$0P:(DE-HGF)0$$aHäringer, Sebastian$$b4
000848218 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b5
000848218 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b6$$eCorresponding author
000848218 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.201701531$$n16$$p1701531$$tAdvanced materials interfaces$$v5$$x2196-7350$$y2018
000848218 909CO $$ooai:juser.fz-juelich.de:848218$$pVDB
000848218 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2015
000848218 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848218 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848218 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848218 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848218 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848218 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848218 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848218 9141_ $$y2018
000848218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b5$$kFZJ
000848218 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000848218 920__ $$lyes
000848218 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000848218 980__ $$ajournal
000848218 980__ $$aVDB
000848218 980__ $$aI:(DE-Juel1)IEK-1-20101013
000848218 980__ $$aUNRESTRICTED
000848218 981__ $$aI:(DE-Juel1)IMD-2-20101013