001     848218
005     20240708132802.0
024 7 _ |2 doi
|a 10.1002/admi.201701531
024 7 _ |2 WOS
|a WOS:000442489600001
037 _ _ |a FZJ-2018-03480
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Hufnagel, Alexander
|b 0
245 _ _ |a Electron‐Blocking and Oxygen Evolution Catalyst Layers by Plasma‐Enhanced Atomic Layer Deposition of Nickel Oxide
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1536571625_25366
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a A plasma‐enhanced atomic layer deposition (ALD) process is presented, capable of producing thin conformal films of nickel(II) oxide (NiO) on various substrates. Nickelocene (NiCp2) is used as an inexpensive metal precursor with oxygen plasma as the oxidant. The film growth rate saturates with both nickel precursor and plasma exposure. An ALD window is observed between 225 and 275 °C. Linear growth is achieved at 250 °C with a growth rate of 0.042 nm per cycle. The thickness is highly uniform and the surface roughness is below 1 nm rms for 52 nm thick films on Si(100). Substrates with aspect ratios up to 1:10 can be processed. As‐deposited, the films consist of polycrystalline, cubic NiO, and are transparent over the entire visible range with an optical bandgap of 3.7 eV. The films consist of stoichiometric NiO and contain ≈1% of carbon impurities. Two promising applications of these films are showcased in renewable energy conversion and storage devices: The films are pinhole‐free and exhibit excellent electron blocking capabilities, making them potential hole‐selective contact layers in solar cells. Also, high electrocatalytic activity of ultrathin NiO films is demonstrated for the alkaline oxygen evolution reaction, especially in electrolytes containing Fe3+.
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Ann‐Kathrin Henß
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Hoffmann, Ramona
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Zeman, Otto
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Häringer, Sebastian
|b 4
700 1 _ |0 P:(DE-Juel1)171780
|a Fattakhova-Rohlfing, Dina
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Bein, Thomas
|b 6
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2750376-8
|a 10.1002/admi.201701531
|n 16
|p 1701531
|t Advanced materials interfaces
|v 5
|x 2196-7350
|y 2018
909 C O |o oai:juser.fz-juelich.de:848218
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171780
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ADV MATER INTERFACES : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21