001     848253
005     20210129234035.0
024 7 _ |a 10.1016/j.jhydrol.2018.06.009
|2 doi
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a WOS:000441492700030
|2 WOS
024 7 _ |a altmetric:43733923
|2 altmetric
037 _ _ |a FZJ-2018-03515
082 _ _ |a 690
100 1 _ |a Groh, Jannis
|0 P:(DE-Juel1)158034
|b 0
|e Corresponding author
245 _ _ |a Determining dew and hoar frost formation for a low mountain range and alpine grassland site by weighable lysimeter
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529917602_21481
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Non-rainfall events like dew or hoar frost formation are often neglected in the water budget, because either assumed to be too small or their determination requires time consuming and difficult measurements. These events supply in many dryland ecosystems a substantial amount of water, but their role for northern humid ecosystems is largely unknown. There is a general need to quantify the ecological relevance for ecosystems of the water amount from dew and hoar frost formation. Weighable precision lysimeters were used to determine dew and hoar frost formation for a low mountain range and alpine grassland site for the hydrological years 2013–2015.Together dew and hoar frost formation ranged on a yearly basis between 42.1 and 67.7 mm, which corresponds to 4.2–6% of the total annual amount of precipitation. In drier months dew and hoar frost contributed up to 16.1% of total monthly precipitation amount. In winter months dew and hoar frost formation contributed up to 38% to the total monthly precipitation amount. Our investigation suggests, that dew and hoar frost formation are of ecological importance during droughts as well as cold periods. The amounts and seasonal patterns of dew and hoar frost formation could be predicted relatively well, based on standard meteorological variables with the Penman-Monteith equation. However, our results also showed, that the surface energy balance model from Penman-Monteith underestimated the amount of dew and hoar frost during colder periods and specific meteorological site conditions (i.e. high wind speeds at night). The mean underestimation between calculated and measured dew and hoar frost on a yearly scale were 63.2% and 16.6% at Rollesbroich and Gumpenstein, respectively. Dew and hoar frost formation contributes substantially to the water budgets of a low mountain range and alpine grassland.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Slawitsch, Veronika
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Herndl, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 3
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 4
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 5
773 _ _ |a 10.1016/j.jhydrol.2018.06.009
|g Vol. 563, p. 372 - 381
|0 PERI:(DE-600)1473173-3
|p 372 - 381
|t Journal of hydrology
|v 563
|y 2018
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/848253/files/1-s2.0-S0022169418304153-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848253/files/1-s2.0-S0022169418304153-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848253/files/1-s2.0-S0022169418304153-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848253/files/1-s2.0-S0022169418304153-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848253/files/1-s2.0-S0022169418304153-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:848253
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129523
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21