001     848260
005     20240711092232.0
024 7 _ |a 10.1016/j.jeurceramsoc.2018.02.032
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a WOS:000433014200019
|2 WOS
037 _ _ |a FZJ-2018-03522
082 _ _ |a 660
100 1 _ |a Wang, An-Ni
|0 P:(DE-Juel1)171995
|b 0
245 _ _ |a Mechanical properties of the solid electrolyte Al-substituted Li 7 La 3 Zr 2 O 12 (LLZO) by utilizing micro-pillar indentation splitting test
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1528973479_23219
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Garnet structured Al-substituted Li7La3Zr2O12 (Al:LLZO) is a promising candidate as electrolyte in all-solid-state Li-ion batteries due to its chemical stability against Li-metal and high voltage cathode materials. In order to ensure long-term stable operation, electrolyte crack growth induced and/or the volume change of the active material on the cathode side needs to be avoided, requiring in particular knowledge of local and global mechanical properties of the electrolyte material. Micro-pillar splitting test was used for the first time on this material to determine the microscopic fracture toughness of single grains and compare it with conventional Vickers indentation fracture toughness (VIF), which represents macroscopic fracture toughness. Both methods yielded comparative results. In conclusion, the micro-pillar splitting test can be used as an advanced locally resolved characterization method that can open up new experimental directions for characterizing and understanding battery materials and enable a targeted approach for material improvements.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nonemacher, Juliane Franciele
|0 P:(DE-Juel1)168112
|b 1
|e Corresponding author
700 1 _ |a Yan, Gang
|0 P:(DE-Juel1)171373
|b 2
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 3
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 4
700 1 _ |a Krüger, Manja
|0 P:(DE-Juel1)172056
|b 5
773 _ _ |a 10.1016/j.jeurceramsoc.2018.02.032
|g Vol. 38, no. 9, p. 3201 - 3209
|0 PERI:(DE-600)2013983-4
|n 9
|p 3201 - 3209
|t Journal of the European Ceramic Society
|v 38
|y 2018
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/848260/files/1-s2.0-S0955221918301158-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848260/files/1-s2.0-S0955221918301158-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848260/files/1-s2.0-S0955221918301158-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848260/files/1-s2.0-S0955221918301158-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848260/files/1-s2.0-S0955221918301158-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:848260
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172056
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21