000848279 001__ 848279
000848279 005__ 20240619083546.0
000848279 0247_ $$2doi$$a10.1039/C8CP00741A
000848279 0247_ $$2ISSN$$a1463-9076
000848279 0247_ $$2ISSN$$a1463-9084
000848279 0247_ $$2Handle$$a2128/20303
000848279 0247_ $$2pmid$$apmid:29697122
000848279 0247_ $$2WOS$$aWOS:000431825300035
000848279 0247_ $$2altmetric$$aaltmetric:34481168
000848279 037__ $$aFZJ-2018-03540
000848279 082__ $$a540
000848279 1001_ $$00000-0003-3516-370X$$aKebede, Getachew G.$$b0
000848279 245__ $$aRed-shifting and blue-shifting OH groups on metal oxide surfaces – towards a unified picture
000848279 260__ $$aCambridge$$bRSC Publ.$$c2018
000848279 3367_ $$2DRIVER$$aarticle
000848279 3367_ $$2DataCite$$aOutput Types/Journal article
000848279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544017653_14780
000848279 3367_ $$2BibTeX$$aARTICLE
000848279 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848279 3367_ $$00$$2EndNote$$aJournal Article
000848279 520__ $$aWe analyse the OH vibrational signatures of 56 structurally unique water molecules and 34 structurally unique hydroxide ions in thin water films on MgO(001) and CaO(001), using DFT-generated anharmonic potential energy surfaces. We find that the OH stretching frequencies of intact water molecules on the surface are always downshifted with respect to the gas-phase species while the OH− groups are either upshifted or downshifted. Despite these differences, the main characteristics of the frequency shifts for all three types of surface OH groups (OHw, OsH and OHf) can be accounted for by one unified expression involving the in situ electric field from the surrounding environment, and the gas-phase molecular properties of the vibrating species (H2O or OH−). The origin behind the different red- and blueshift behaviour can be traced back to the fact that the molecular dipole moment of a gas-phase water molecule increases when an OH bond is stretched, but the opposite is true for the hydroxide ion. We propose that familiarity with the relations presented here will help surface scientists in the interpretation of vibrational OH spectra for thin water films on ionic crystal surfaces.
000848279 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000848279 588__ $$aDataset connected to CrossRef
000848279 7001_ $$00000-0002-4315-8073$$aMitev, Pavlin D.$$b1
000848279 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b2$$ufzj
000848279 7001_ $$00000-0003-2352-0458$$aHermansson, Kersti$$b3$$eCorresponding author
000848279 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C8CP00741A$$gVol. 20, no. 18, p. 12678 - 12687$$n18$$p12678 - 12687$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018
000848279 8564_ $$uhttps://juser.fz-juelich.de/record/848279/files/c8cp00741a.pdf$$yOpenAccess
000848279 8564_ $$uhttps://juser.fz-juelich.de/record/848279/files/c8cp00741a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000848279 909CO $$ooai:juser.fz-juelich.de:848279$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000848279 9101_ $$0I:(DE-HGF)0$$60000-0003-3516-370X$$aExternal Institute$$b0$$kExtern
000848279 9101_ $$0I:(DE-HGF)0$$60000-0002-4315-8073$$aExternal Institute$$b1$$kExtern
000848279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b2$$kFZJ
000848279 9101_ $$0I:(DE-HGF)0$$60000-0003-2352-0458$$aExternal Institute$$b3$$kExtern
000848279 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000848279 9141_ $$y2018
000848279 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848279 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000848279 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000848279 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000848279 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848279 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848279 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848279 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848279 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000848279 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848279 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848279 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848279 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000848279 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848279 920__ $$lyes
000848279 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000848279 9801_ $$aFullTexts
000848279 980__ $$ajournal
000848279 980__ $$aVDB
000848279 980__ $$aUNRESTRICTED
000848279 980__ $$aI:(DE-Juel1)ICS-3-20110106