000848280 001__ 848280
000848280 005__ 20210129234045.0
000848280 0247_ $$2doi$$a10.1113/JP275905
000848280 0247_ $$2ISSN$$a0022-3751
000848280 0247_ $$2ISSN$$a1469-7793
000848280 0247_ $$2pmid$$apmid:29659026
000848280 0247_ $$2WOS$$aWOS:000435286000016
000848280 0247_ $$2altmetric$$aaltmetric:43796653
000848280 037__ $$aFZJ-2018-03541
000848280 082__ $$a610
000848280 1001_ $$00000-0002-8537-1606$$aKörner, Jannis$$b0
000848280 245__ $$aβ1 subunit stabilises sodium channel Nav1.7 against mechanical stress
000848280 260__ $$aHoboken, NJ$$bWiley-Blackwell$$c2018
000848280 3367_ $$2DRIVER$$aarticle
000848280 3367_ $$2DataCite$$aOutput Types/Journal article
000848280 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565250690_18550
000848280 3367_ $$2BibTeX$$aARTICLE
000848280 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848280 3367_ $$00$$2EndNote$$aJournal Article
000848280 520__ $$aVoltage‐gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co‐expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site‐directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21‐Cys43) which is partially involved in this process: the β1‐C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be modified by interfering with the extracellular end of segment 6 of domain IV. Thus, our data suggest that physiological gating of Nav1.7 may be protected against mechanical stress in a living organism by assembly with the β1 subunit.
000848280 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000848280 536__ $$0G:(DE-Juel1)jics40_20130501$$aMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20130501)$$cjics40_20130501$$fMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS$$x1
000848280 536__ $$0G:(DE-Juel1)jics41_20161101$$aMechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family (jics41_20161101)$$cjics41_20161101$$fMechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family$$x2
000848280 536__ $$0G:(DE-Juel1)jics42_20181101$$aMultiscale simulations of voltage-gated sodium channel complexes and clusters (jics42_20181101)$$cjics42_20181101$$fMultiscale simulations of voltage-gated sodium channel complexes and clusters$$x3
000848280 588__ $$aDataset connected to CrossRef
000848280 7001_ $$00000-0001-9423-0453$$aMeents, Jannis$$b1
000848280 7001_ $$0P:(DE-Juel1)156429$$aMachtens, Jan-Philipp$$b2
000848280 7001_ $$00000-0001-6319-6272$$aLampert, Angelika$$b3$$eCorresponding author
000848280 773__ $$0PERI:(DE-600)1475290-6$$a10.1113/JP275905$$n12$$p2433-2445$$tThe journal of physiology$$v596$$x0022-3751$$y2018
000848280 8564_ $$uhttps://juser.fz-juelich.de/record/848280/files/JP275905.pdf$$yRestricted
000848280 8564_ $$uhttps://juser.fz-juelich.de/record/848280/files/JP275905.gif?subformat=icon$$xicon$$yRestricted
000848280 8564_ $$uhttps://juser.fz-juelich.de/record/848280/files/JP275905.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000848280 8564_ $$uhttps://juser.fz-juelich.de/record/848280/files/JP275905.jpg?subformat=icon-180$$xicon-180$$yRestricted
000848280 8564_ $$uhttps://juser.fz-juelich.de/record/848280/files/JP275905.jpg?subformat=icon-640$$xicon-640$$yRestricted
000848280 909CO $$ooai:juser.fz-juelich.de:848280$$pVDB
000848280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156429$$aForschungszentrum Jülich$$b2$$kFZJ
000848280 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000848280 9141_ $$y2018
000848280 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYSIOL-LONDON : 2015
000848280 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848280 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848280 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848280 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000848280 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000848280 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848280 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848280 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848280 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848280 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000848280 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000848280 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848280 920__ $$lyes
000848280 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000848280 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000848280 980__ $$ajournal
000848280 980__ $$aVDB
000848280 980__ $$aI:(DE-Juel1)ICS-4-20110106
000848280 980__ $$aI:(DE-82)080012_20140620
000848280 980__ $$aUNRESTRICTED
000848280 981__ $$aI:(DE-Juel1)IBI-1-20200312