001     848280
005     20210129234045.0
024 7 _ |a 10.1113/JP275905
|2 doi
024 7 _ |a 0022-3751
|2 ISSN
024 7 _ |a 1469-7793
|2 ISSN
024 7 _ |a pmid:29659026
|2 pmid
024 7 _ |a WOS:000435286000016
|2 WOS
024 7 _ |a altmetric:43796653
|2 altmetric
037 _ _ |a FZJ-2018-03541
082 _ _ |a 610
100 1 _ |a Körner, Jannis
|0 0000-0002-8537-1606
|b 0
245 _ _ |a β1 subunit stabilises sodium channel Nav1.7 against mechanical stress
260 _ _ |a Hoboken, NJ
|c 2018
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1565250690_18550
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Voltage‐gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co‐expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site‐directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21‐Cys43) which is partially involved in this process: the β1‐C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be modified by interfering with the extracellular end of segment 6 of domain IV. Thus, our data suggest that physiological gating of Nav1.7 may be protected against mechanical stress in a living organism by assembly with the β1 subunit.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20130501)
|0 G:(DE-Juel1)jics40_20130501
|c jics40_20130501
|f MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS
|x 1
536 _ _ |a Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family (jics41_20161101)
|0 G:(DE-Juel1)jics41_20161101
|c jics41_20161101
|f Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family
|x 2
536 _ _ |a Multiscale simulations of voltage-gated sodium channel complexes and clusters (jics42_20181101)
|0 G:(DE-Juel1)jics42_20181101
|c jics42_20181101
|f Multiscale simulations of voltage-gated sodium channel complexes and clusters
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meents, Jannis
|0 0000-0001-9423-0453
|b 1
700 1 _ |a Machtens, Jan-Philipp
|0 P:(DE-Juel1)156429
|b 2
700 1 _ |a Lampert, Angelika
|0 0000-0001-6319-6272
|b 3
|e Corresponding author
773 _ _ |a 10.1113/JP275905
|0 PERI:(DE-600)1475290-6
|n 12
|p 2433-2445
|t The journal of physiology
|v 596
|y 2018
|x 0022-3751
856 4 _ |u https://juser.fz-juelich.de/record/848280/files/JP275905.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848280/files/JP275905.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848280/files/JP275905.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848280/files/JP275905.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848280/files/JP275905.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:848280
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156429
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYSIOL-LONDON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21