001     848294
005     20210129234046.0
024 7 _ |a 10.1016/j.rse.2018.05.013
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a WOS:000440776000009
|2 WOS
024 7 _ |a altmetric:43920662
|2 altmetric
037 _ _ |a FZJ-2018-03544
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Celesti, Marco
|0 0000-0001-7249-7106
|b 0
|e Corresponding author
245 _ _ |a Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530101700_25293
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A novel approach to characterize the physiological conditions of plants from hyperspectral remote sensing data through the numerical inversion of a light version of the SCOPE model is proposed. The combined retrieval of vegetation biochemical and biophysical parameters and Sun-induced chlorophyll fluorescence (F) was investigated exploiting high resolution spectral measurements in the visible and near-infrared spectral regions. First, the retrieval scheme was evaluated against a synthetic dataset. Then, it was applied to very high resolution (sub-nanometer) canopy level spectral measurements collected over a lawn treated with different doses of a herbicide (Chlorotoluron) known to instantaneously inhibit both Photochemical and Non-Photochemical Quenching (PQ and NPQ, respectively). For the first time the full spectrum of canopy F, the fluorescence quantum yield (ΦF), as well as the main vegetation parameters that control light absorption and reabsorption, were retrieved concurrently using canopy-level high resolution apparent reflectance (ρ*) spectra. The effects of pigment content, leaf/canopy structural properties and physiology were effectively discriminated. Their combined observation over time led to the recognition of dynamic patterns of stress adaptation and stress recovery. As a reference, F values obtained with the model inversion were compared to those retrieved with state of the art Spectral Fitting Methods (SFM) and SpecFit retrieval algorithms applied on field data. ΦF retrieved from ρ* was eventually compared with an independent biophysical model of photosynthesis and fluorescence. These results foster the use of repeated hyperspectral remote sensing observations together with radiative transfer and biochemical models for plant status monitoring.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a van der Tol, Christiaan
|0 0000-0002-2484-8191
|b 1
700 1 _ |a Cogliati, Sergio
|0 0000-0002-7192-2032
|b 2
700 1 _ |a Panigada, Cinzia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yang, Peiqi
|0 0000-0003-4377-8560
|b 4
700 1 _ |a Pinto, Francisco
|0 P:(DE-Juel1)138884
|b 5
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 6
|u fzj
700 1 _ |a Miglietta, Franco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Colombo, Roberto
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rossini, Micol
|0 0000-0002-6052-3140
|b 9
773 _ _ |a 10.1016/j.rse.2018.05.013
|g Vol. 215, p. 97 - 108
|0 PERI:(DE-600)1498713-2
|p 97 - 108
|t Remote sensing of environment
|v 215
|y 2018
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/848294/files/1-s2.0-S0034425718302347-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848294/files/1-s2.0-S0034425718302347-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848294/files/1-s2.0-S0034425718302347-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848294/files/1-s2.0-S0034425718302347-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848294/files/1-s2.0-S0034425718302347-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848294/files/1-s2.0-S0034425718302347-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:848294
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21