000848301 001__ 848301
000848301 005__ 20240619083546.0
000848301 0247_ $$2doi$$a10.1039/C7CP05843H
000848301 0247_ $$2ISSN$$a1463-9076
000848301 0247_ $$2ISSN$$a1463-9084
000848301 0247_ $$2pmid$$apmid:29235590
000848301 0247_ $$2WOS$$aWOS:000419219700032
000848301 0247_ $$2altmetric$$aaltmetric:31289108
000848301 0247_ $$2Handle$$a2128/30746
000848301 037__ $$aFZJ-2018-03551
000848301 082__ $$a540
000848301 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0
000848301 245__ $$aUnravelling the hydrophobicity of urea in water using thermodiffusion: implications for protein denaturation
000848301 260__ $$aCambridge$$bRSC Publ.$$c2018
000848301 3367_ $$2DRIVER$$aarticle
000848301 3367_ $$2DataCite$$aOutput Types/Journal article
000848301 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544017301_1334
000848301 3367_ $$2BibTeX$$aARTICLE
000848301 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848301 3367_ $$00$$2EndNote$$aJournal Article
000848301 520__ $$aUrea is widely used as a protein denaturant in aqueous solutions. Experimental and computer simulation studies have shown that it dissolves in water almost ideally at high concentrations, introducing little disruption in the water hydrogen bonded structure. However, at concentrations of the order of 5 M or higher, urea induces denaturation in a wide range of proteins. The origin of this behaviour is not completely understood, but it is believed to stem from a balance between urea-protein and urea-water interactions, with urea becoming possibly hydrophobic at a specific concentration range. The small changes observed in the water structure make it difficult to connect the denaturation effects to the solvation properties. Here we show that the exquisite sensitivity of thermodiffusion to solute-water interactions allows the identification of the onset of hydrophobicity of urea-water mixtures. The hydrophobic behaviour is reflected in a sign reversal of the temperature dependent slope of the Soret coefficient, which is observed, both in experiments and non-equilibrium computer simulations at [similar]5 M concentration of urea in water. This concentration regime corresponds to the one where abrupt changes in the denaturation of proteins are commonly observed. We show that the onset of hydrophobicity is intrinsically connected to the urea-water interactions. Our results allow us to identify correlations between the Soret coefficient and the partition coefficient, log P, hence establishing the thermodiffusion technique as a powerful approach to study hydrophobicity.
000848301 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000848301 588__ $$aDataset connected to CrossRef
000848301 7001_ $$00000-0002-4164-7236$$aDi Lecce, Silvia$$b1
000848301 7001_ $$00000-0001-9496-4887$$aBresme, Fernando$$b2$$eCorresponding author
000848301 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b3$$eCorresponding author$$ufzj
000848301 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP05843H$$gVol. 20, no. 2, p. 1012 - 1020$$n2$$p1012 - 1020$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018
000848301 8564_ $$uhttps://juser.fz-juelich.de/record/848301/files/c7cp05843h.pdf$$yRestricted
000848301 8564_ $$uhttps://juser.fz-juelich.de/record/848301/files/c7cp05843h.pdf?subformat=pdfa$$xpdfa$$yRestricted
000848301 8564_ $$uhttps://juser.fz-juelich.de/record/848301/files/supplementary-Material.pdf$$yOpenAccess
000848301 8564_ $$uhttps://juser.fz-juelich.de/record/848301/files/urea_chem%20sc%20submission.pdf$$yOpenAccess
000848301 909CO $$ooai:juser.fz-juelich.de:848301$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000848301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b0$$kFZJ
000848301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b3$$kFZJ
000848301 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000848301 9141_ $$y2018
000848301 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848301 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000848301 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000848301 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848301 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848301 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848301 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848301 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000848301 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848301 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848301 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848301 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000848301 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848301 920__ $$lyes
000848301 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000848301 980__ $$ajournal
000848301 980__ $$aVDB
000848301 980__ $$aUNRESTRICTED
000848301 980__ $$aI:(DE-Juel1)ICS-3-20110106
000848301 9801_ $$aFullTexts