000848302 001__ 848302 000848302 005__ 20240619083546.0 000848302 0247_ $$2doi$$a10.1021/acs.jpcb.8b01152 000848302 0247_ $$2ISSN$$a1089-5647 000848302 0247_ $$2ISSN$$a1520-5207 000848302 0247_ $$2ISSN$$a1520-6106 000848302 0247_ $$2Handle$$a2128/20301 000848302 0247_ $$2pmid$$apmid:29558136 000848302 0247_ $$2WOS$$aWOS:000430641900040 000848302 0247_ $$2altmetric$$aaltmetric:47735627 000848302 037__ $$aFZJ-2018-03552 000848302 082__ $$a530 000848302 1001_ $$00000-0002-3544-2277$$aSehnem, André Luiz$$b0 000848302 245__ $$aThermodiffusion of Monovalent Organic Salts in Water 000848302 260__ $$aWashington, DC$$bSoc.$$c2018 000848302 3367_ $$2DRIVER$$aarticle 000848302 3367_ $$2DataCite$$aOutput Types/Journal article 000848302 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544017433_1274 000848302 3367_ $$2BibTeX$$aARTICLE 000848302 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000848302 3367_ $$00$$2EndNote$$aJournal Article 000848302 520__ $$aThe ionic Soret effect induced by temperaturegradients is investigated in organic electrolytes (tetramethylammoniumand tetrabutylammonium hydroxides) dispersed in waterusing a holographic grating experiment. We report the influences oftemperature and salt concentrations on the Soret, diffusion, andthermal diffusion coefficients. Experimental results to the thermaldiffusion coefficient are compared with a theoretical description forthermodiffusion of Brownian particles in liquids based in thethermal expansion of the liquid solution. It is observed that theobtained thermal diffusion coefficients for the organic electrolytespresent a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic andcommon inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusioncoefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force termthat also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition betweenthermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heatof transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and theclassical heat of transport theory. 000848302 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000848302 588__ $$aDataset connected to CrossRef 000848302 7001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b1$$ufzj 000848302 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b2 000848302 7001_ $$0P:(DE-HGF)0$$aFigueiredo Neto, Antônio Martins$$b3$$eCorresponding author 000848302 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.8b01152$$gVol. 122, no. 14, p. 4093 - 4100$$n14$$p4093 - 4100$$tThe @journal of physical chemistry <Washington, DC> / B$$v122$$x1520-5207$$y2018 000848302 8564_ $$uhttps://juser.fz-juelich.de/record/848302/files/acs.jpcb.8b01152.pdf$$yRestricted 000848302 8564_ $$uhttps://juser.fz-juelich.de/record/848302/files/acs.jpcb.8b01152.pdf?subformat=pdfa$$xpdfa$$yRestricted 000848302 8564_ $$uhttps://juser.fz-juelich.de/record/848302/files/andre-article.pdf$$yPublished on 2018-03-20. Available in OpenAccess from 2019-03-20. 000848302 8564_ $$uhttps://juser.fz-juelich.de/record/848302/files/andre-article.gif?subformat=icon$$xicon$$yPublished on 2018-03-20. Available in OpenAccess from 2019-03-20. 000848302 8564_ $$uhttps://juser.fz-juelich.de/record/848302/files/andre-article.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-03-20. Available in OpenAccess from 2019-03-20. 000848302 8564_ $$uhttps://juser.fz-juelich.de/record/848302/files/andre-article.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-03-20. Available in OpenAccess from 2019-03-20. 000848302 8564_ $$uhttps://juser.fz-juelich.de/record/848302/files/andre-article.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-03-20. Available in OpenAccess from 2019-03-20. 000848302 909CO $$ooai:juser.fz-juelich.de:848302$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000848302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b1$$kFZJ 000848302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b2$$kFZJ 000848302 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000848302 9141_ $$y2018 000848302 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000848302 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000848302 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000848302 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000848302 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000848302 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000848302 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000848302 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000848302 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000848302 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2015 000848302 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000848302 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000848302 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000848302 920__ $$lyes 000848302 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0 000848302 9801_ $$aFullTexts 000848302 980__ $$ajournal 000848302 980__ $$aVDB 000848302 980__ $$aUNRESTRICTED 000848302 980__ $$aI:(DE-Juel1)ICS-3-20110106