001     848302
005     20240619083546.0
024 7 _ |a 10.1021/acs.jpcb.8b01152
|2 doi
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 2128/20301
|2 Handle
024 7 _ |a pmid:29558136
|2 pmid
024 7 _ |a WOS:000430641900040
|2 WOS
024 7 _ |a altmetric:47735627
|2 altmetric
037 _ _ |a FZJ-2018-03552
082 _ _ |a 530
100 1 _ |a Sehnem, André Luiz
|0 0000-0002-3544-2277
|b 0
245 _ _ |a Thermodiffusion of Monovalent Organic Salts in Water
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544017433_1274
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ionic Soret effect induced by temperaturegradients is investigated in organic electrolytes (tetramethylammoniumand tetrabutylammonium hydroxides) dispersed in waterusing a holographic grating experiment. We report the influences oftemperature and salt concentrations on the Soret, diffusion, andthermal diffusion coefficients. Experimental results to the thermaldiffusion coefficient are compared with a theoretical description forthermodiffusion of Brownian particles in liquids based in thethermal expansion of the liquid solution. It is observed that theobtained thermal diffusion coefficients for the organic electrolytespresent a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic andcommon inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusioncoefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force termthat also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition betweenthermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heatof transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and theclassical heat of transport theory.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 1
|u fzj
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 2
700 1 _ |a Figueiredo Neto, Antônio Martins
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.8b01152
|g Vol. 122, no. 14, p. 4093 - 4100
|0 PERI:(DE-600)2006039-7
|n 14
|p 4093 - 4100
|t The @journal of physical chemistry / B
|v 122
|y 2018
|x 1520-5207
856 4 _ |u https://juser.fz-juelich.de/record/848302/files/acs.jpcb.8b01152.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/848302/files/acs.jpcb.8b01152.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2018-03-20. Available in OpenAccess from 2019-03-20.
|u https://juser.fz-juelich.de/record/848302/files/andre-article.pdf
856 4 _ |y Published on 2018-03-20. Available in OpenAccess from 2019-03-20.
|x icon
|u https://juser.fz-juelich.de/record/848302/files/andre-article.gif?subformat=icon
856 4 _ |y Published on 2018-03-20. Available in OpenAccess from 2019-03-20.
|x icon-1440
|u https://juser.fz-juelich.de/record/848302/files/andre-article.jpg?subformat=icon-1440
856 4 _ |y Published on 2018-03-20. Available in OpenAccess from 2019-03-20.
|x icon-180
|u https://juser.fz-juelich.de/record/848302/files/andre-article.jpg?subformat=icon-180
856 4 _ |y Published on 2018-03-20. Available in OpenAccess from 2019-03-20.
|x icon-640
|u https://juser.fz-juelich.de/record/848302/files/andre-article.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:848302
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21