000848311 001__ 848311
000848311 005__ 20240711113903.0
000848311 0247_ $$2doi$$a10.3390/met8070488
000848311 0247_ $$2Handle$$a2128/19260
000848311 0247_ $$2WOS$$aWOS:000445096800018
000848311 037__ $$aFZJ-2018-03556
000848311 082__ $$a530
000848311 1001_ $$0P:(DE-Juel1)166427$$aKlein, Felix$$b0$$eCorresponding author$$ufzj
000848311 245__ $$aOn Oxidation Resistance Mechanisms at 1273 K of Tungsten-Based Alloys Containing Chromium and Yttria
000848311 260__ $$aBasel$$bMDPI$$c2018
000848311 3367_ $$2DRIVER$$aarticle
000848311 3367_ $$2DataCite$$aOutput Types/Journal article
000848311 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530874610_8783
000848311 3367_ $$2BibTeX$$aARTICLE
000848311 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848311 3367_ $$00$$2EndNote$$aJournal Article
000848311 520__ $$aTungsten (W) is currently deemed the main candidate for the plasma-facing armor material of the first wall of future fusion reactors, such as DEMO. Advantages of W include a high melting point, high thermal conductivity, low tritium retention, and low erosion yield. However, was an accident to occur, air ingress into the vacuum vessel could occur and the temperature of the first wall could reach 1200K to 1450K due to nuclear decay heat. In the absence of cooling, the temperature remains in that range for several weeks. At these temperatures, the radioactive tungsten oxidizes and then volatilizes. Smart W alloys are therefore being developed. Smart alloys are supposed to preserve properties of W during plasma operation while suppressing tungsten oxide formation in case of an accident. This study focuses on investigations of thin film smart alloys produced by magnetron sputtering. These alloys provide an idealistic system with a homogeneous distribution of the elements W, chromium (Cr), and yttrium (Y) on an atomic scale. The recommended composition is W with 12 weight % of Cr and 0.5 weight % of Y. Passivation and a suppression of WO3 sublimation is shown. For the first time, the mechanisms yielding the improved oxidation resistance are analyzed in detail. A protective Cr2O3 layer forms at the surface. The different stages of the oxidation processes up to the failure of the protective function are analyzed for the first time. Using 18O as a tracer, it is shown for the first time that the oxide growth occurs at the surface of the protective oxide. The Cr is continuously replenished from the bulk of the sample, including the Cr-rich phase which forms during exposure at 1273K. A homogenous distribution of yttria within the W-matrix, which is preserved during oxidation, is a peculiarity of the analyzed alloy. Further, an Y-enriched nucleation site is found at the interface between metal and oxide. This nucleation sites are deemed to be crucial for the improved oxidation resistance.
000848311 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000848311 588__ $$aDataset connected to CrossRef
000848311 7001_ $$0P:(DE-Juel1)161367$$aWegener, Tobias$$b1
000848311 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, Andrey$$b2$$ufzj
000848311 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b3$$ufzj
000848311 7001_ $$0P:(DE-Juel1)171237$$aTan, Xiaoyue$$b4
000848311 7001_ $$0P:(DE-Juel1)166256$$aSchmitz, Janina$$b5$$ufzj
000848311 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b6$$ufzj
000848311 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b7$$ufzj
000848311 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b8$$ufzj
000848311 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b9$$ufzj
000848311 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b10
000848311 773__ $$0PERI:(DE-600)2662252-X$$a10.3390/met8070488$$gVol. 8, no. 7, p. 488 -$$n7$$p488 -$$tMetals$$v8$$x2075-4701$$y2018
000848311 8564_ $$uhttps://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.pdf
000848311 8564_ $$uhttps://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.gif?subformat=icon$$xicon
000848311 8564_ $$uhttps://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.jpg?subformat=icon-1440$$xicon-1440
000848311 8564_ $$uhttps://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.jpg?subformat=icon-180$$xicon-180
000848311 8564_ $$uhttps://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.jpg?subformat=icon-640$$xicon-640
000848311 8564_ $$uhttps://juser.fz-juelich.de/record/848311/files/metals-08-00488.pdf$$yOpenAccess
000848311 8767_ $$8metals-311554$$92018-06-15$$d2018-06-18$$eAPC$$jZahlung erfolgt
000848311 909CO $$ooai:juser.fz-juelich.de:848311$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b0$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161367$$aForschungszentrum Jülich$$b1$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b2$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b3$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171237$$aForschungszentrum Jülich$$b4$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166256$$aForschungszentrum Jülich$$b5$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b6$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b7$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b8$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b9$$kFZJ
000848311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b10$$kFZJ
000848311 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000848311 9141_ $$y2018
000848311 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848311 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000848311 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000848311 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETALS-BASEL : 2015
000848311 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000848311 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000848311 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848311 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848311 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848311 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000848311 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848311 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848311 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848311 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000848311 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000848311 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x2
000848311 9801_ $$aAPC
000848311 9801_ $$aFullTexts
000848311 980__ $$ajournal
000848311 980__ $$aVDB
000848311 980__ $$aUNRESTRICTED
000848311 980__ $$aI:(DE-Juel1)IEK-4-20101013
000848311 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000848311 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000848311 980__ $$aAPC
000848311 981__ $$aI:(DE-Juel1)IFN-1-20101013