001     848311
005     20240711113903.0
024 7 _ |a 10.3390/met8070488
|2 doi
024 7 _ |a 2128/19260
|2 Handle
024 7 _ |a WOS:000445096800018
|2 WOS
037 _ _ |a FZJ-2018-03556
082 _ _ |a 530
100 1 _ |a Klein, Felix
|0 P:(DE-Juel1)166427
|b 0
|e Corresponding author
|u fzj
245 _ _ |a On Oxidation Resistance Mechanisms at 1273 K of Tungsten-Based Alloys Containing Chromium and Yttria
260 _ _ |a Basel
|c 2018
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530874610_8783
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten (W) is currently deemed the main candidate for the plasma-facing armor material of the first wall of future fusion reactors, such as DEMO. Advantages of W include a high melting point, high thermal conductivity, low tritium retention, and low erosion yield. However, was an accident to occur, air ingress into the vacuum vessel could occur and the temperature of the first wall could reach 1200K to 1450K due to nuclear decay heat. In the absence of cooling, the temperature remains in that range for several weeks. At these temperatures, the radioactive tungsten oxidizes and then volatilizes. Smart W alloys are therefore being developed. Smart alloys are supposed to preserve properties of W during plasma operation while suppressing tungsten oxide formation in case of an accident. This study focuses on investigations of thin film smart alloys produced by magnetron sputtering. These alloys provide an idealistic system with a homogeneous distribution of the elements W, chromium (Cr), and yttrium (Y) on an atomic scale. The recommended composition is W with 12 weight % of Cr and 0.5 weight % of Y. Passivation and a suppression of WO3 sublimation is shown. For the first time, the mechanisms yielding the improved oxidation resistance are analyzed in detail. A protective Cr2O3 layer forms at the surface. The different stages of the oxidation processes up to the failure of the protective function are analyzed for the first time. Using 18O as a tracer, it is shown for the first time that the oxide growth occurs at the surface of the protective oxide. The Cr is continuously replenished from the bulk of the sample, including the Cr-rich phase which forms during exposure at 1273K. A homogenous distribution of yttria within the W-matrix, which is preserved during oxidation, is a peculiarity of the analyzed alloy. Further, an Y-enriched nucleation site is found at the interface between metal and oxide. This nucleation sites are deemed to be crucial for the improved oxidation resistance.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wegener, Tobias
|0 P:(DE-Juel1)161367
|b 1
700 1 _ |a Litnovsky, Andrey
|0 P:(DE-Juel1)130090
|b 2
|u fzj
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 3
|u fzj
700 1 _ |a Tan, Xiaoyue
|0 P:(DE-Juel1)171237
|b 4
700 1 _ |a Schmitz, Janina
|0 P:(DE-Juel1)166256
|b 5
|u fzj
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 6
|u fzj
700 1 _ |a Coenen, Jan Willem
|0 P:(DE-Juel1)2594
|b 7
|u fzj
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 8
|u fzj
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 9
|u fzj
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 10
773 _ _ |a 10.3390/met8070488
|g Vol. 8, no. 7, p. 488 -
|0 PERI:(DE-600)2662252-X
|n 7
|p 488 -
|t Metals
|v 8
|y 2018
|x 2075-4701
856 4 _ |u https://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/848311/files/Invoice_MDPI_metals-311554_879.30EUR.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/848311/files/metals-08-00488.pdf
909 C O |o oai:juser.fz-juelich.de:848311
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171237
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166256
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)133840
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METALS-BASEL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21