001     848317
005     20240711085607.0
024 7 _ |a 10.1016/j.fusengdes.2018.06.006
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a 2128/18942
|2 Handle
024 7 _ |a WOS:000439538100022
|2 WOS
037 _ _ |a FZJ-2018-03562
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Vacuum plasma spraying of functionally graded tungsten/EUROFER97 coatings for fusion applications
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529327657_32176
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As structural materials for future fusion power plants, reduced activation ferritic martensitic steels as EUROFER97 can be used. Unfortunately, the interaction of the plasma with the steel would result in a limited lifetime, so protective layers are investigated. An excellent protective material is tungsten, as it shows unique properties with respect to low sputtering, high melting points and low activation. However, the mismatch of thermo-physical properties between tungsten and EUROFER97 can lead to large stress levels and even failure.A possible way to overcome this problem is the use of functionally graded material (FGM). The paper will describe the manufacture of these FGMs by vacuum plasma spraying and their characterization. First of all, two different feeding lines have been used to produce the coatings. A major problem lies in different melting points of tungsten and steel. So the particle size distribution has to be adjusted to achieve sufficient melting of both materials during the spray process. In a second step, the feeding rates were optimized to obtain the wanted amount of tungsten and steel phases in the graded structures. In a thermal spray process, the gradient cannot be made continuously, however it has to be applied in a step-wise manner. In this investigation, samples with 3 and 5 different concentrations (excluding the pure steel and tungsten part) have been produced. The microstructures of these layers have been investigated. In addition, hardness was measured and the residual stress state was determined by the hole drilling method.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rauwald, K.-H.
|0 P:(DE-Juel1)129653
|b 1
|u fzj
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 2
|u fzj
700 1 _ |a Aktaa, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Weber, T.
|0 P:(DE-Juel1)156330
|b 4
|u fzj
700 1 _ |a Back, H. C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Qu, D.
|0 P:(DE-Juel1)174490
|b 6
|u fzj
700 1 _ |a Gibmeier, J.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.fusengdes.2018.06.006
|g Vol. 133, p. 148 - 156
|0 PERI:(DE-600)1492280-0
|p 148 - 156
|t Fusion engineering and design
|v 133
|y 2018
|x 0920-3796
856 4 _ |u https://juser.fz-juelich.de/record/848317/files/1-s2.0-S092037961830526X-main.pdf
|y Restricted
856 4 _ |y Published on 2018-06-14. Available in OpenAccess from 2020-06-14.
|u https://juser.fz-juelich.de/record/848317/files/Wsteel%20Va%C3%9Fen.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/848317/files/1-s2.0-S092037961830526X-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/848317/files/1-s2.0-S092037961830526X-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/848317/files/1-s2.0-S092037961830526X-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/848317/files/1-s2.0-S092037961830526X-main.jpg?subformat=icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:848317
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156330
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)174490
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21