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Abstract

The calculation of discrete or continuous relaxation time spectra from rheo-
metric measurables of polydisperse polymers is an ill-posed problem. In
this paper, a curve fitting method for solving this problem is presented and
compared to selected models from the literature. It is shown that the new
method is capable of correctly predicting the molecular mass distributions
of linear polydisperse polymer melts as well as their relaxation time spectra.

1 Introduction

The relaxation time spectrum (RTS) of a polymer melt is a unique repre-
sentation of the underlying particle dynamics within different time regimes.
Due to its molecular mass distribution (MMD), the relaxation time spec-
trum of a polydisperse polymer melt is more complex than the RTS of a
monodisperse species. In order to account for the smeared-out representa-
tion of particle dynamics in such a spectrum, mixing rules (MRs) for the
relaxation strengths and relaxation times are needed.

A RTS is usually calculated from rheometric measurables by conducting
a rheometrical test in the quasi-linear rheological response regime over the
largest possible inverse time span and applying the generalized Maxwell
model to either the real or the imaginary part of the complex shear modulus.
Since both parts of the complex modulus in the generalized Maxwell model
are Kramers-Kronig relations (de L. Kronig, 1926), (Kramers, 1927), their
inversion is a mathematcally ill-posed problem (IPP).

As for every IPP, a solution can be found by using an appropriate reg-
ularization scheme (Orbey and Dealy, 1991), (Mead, 1994), (Roths et al.,
2000). A fairly simple regularization scheme is the use of a predefined re-
sponse function with a reduced number of parameters as compared to the
original problem. For the case of RTS, however, the definition of a response
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function, which was introduced as a so called MR before, is a very diffi-
cult task. This is attributed to the fact that a MR has to contain the full
spectrum of particle dynamics of the polydisperse polymer melt.

In this paper, the above outlined scheme is used together with a curve
fitting method to calculate the RTS of an exemplary linear polydisperse
polymer melt from its frequency dependent storage modulus with regards
to its MMD. The method is based on a theory developed in an earlier pa-
per (Lang, 2017), where limitations and applicability to different polymer
types was discussed in detail. The scheme is compared to existing numerical
methods from the literature which use different MRs. First, the theoretical
background of the mathematical and physical problem is outlined and a so-
lution is derived. Then, the solution is compared to existing models and the
MMD, which presents the only way of comparing the calculation output to
measured data.

2 Theory

The dynamic moduli G′(ω) and G′′(ω) of a polydisperse polymer melt are
functions of the angular frequency ω. In order to calculate the RTS, {gi, τi}
in discrete representation and H(τ) in continuous representation, it is possi-
ble to use either of the measured moduli. Here, the storage modulus G′(ω)
is used. The generalized Maxwell model leads to a Kramers-Kronig relation
for the storage modulus, incorporating either the discrete RTS:

G′(ω) =
N
∑

i=1

gi
(τiω)2

1 + (τiω)2
, (1)

or the continuous RTS:

G′(ω) =

∫ ∞

0

dτH(τ)
τω2

1 + (τω)2
. (2)

The inversion of either equation 1 or 2 would directly give the RTS. However,
virtually infinite combinations of {gi, τi} or H(τ) lead to the same outcome
for the storage modulus. This means that solutions to these equations are
not unique, making the inversion of both equations ill-posed according to
the second Hadamard criterion (Hadamard, 1902). In the following, five
different ways to overcome ill-posedness will be presented, all of which in-
corporate different physical backgrounds in the predefinition of a solution
to equations 1 and 2.

2.1 Tikhonov regularization

One can calculate the RTS without using any additional physical model by
inverting equations 1 and 2 using a mathematical regularization scheme.
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The method by Orbey and Dealy (1991), in the rest of the paper referred
to as OD method, is shown as one example of such a scheme which uses
Tikhonov regularization (Tikhonov, 1963).

The normal form of equation 1 reads limδ→0:

M
∑

j=1

‖
1

G′(ωj)
gi

(τiωj)
2

1 + (τiωj)2
− 1‖2 = δ , (3)

where ‖ · ‖ stands for a vector norm. One can define a linear operator:

Kij :=
1

G′(ωj)
gi

(τiωj)
2

1 + (τiωj)2
, (4)

and use singular value decomposition K = U ·W ·V T , where the superscript
T stands for transposed, in order to rewrite equation 1 as limδ→0:

δ = ‖Kg−b‖2 = ‖WV T g−UT b‖2 =
N
∑

i=1

(

wizi − uTi b
)2

+
M
∑

i=N+1

(uTi b)
2 , (5)

which has the minimum solution g = V z† with z†i = uTi b/wi for i = 1, N

and z†i = 0 for i = N + 1,M . Since this solution is arbitrary due to the
above mentioned violation of the second Hadamard criterion, one can use
Tikhonov regularization to find an appropriate physically meaningful solu-
tion of equation 1. This is carried out by appending a Lagrange multiplier
λ to equation 5, such that limδ→0:

δ = λ‖g‖2 + ‖Kg − b‖2 , (6)

which possesses the solution g = V z†λ with z†λ = wiu
T
i b/(w

2
i + λ). The

Lagrange multiplier can be determined using limδ→0:

δ =
N
∑

i=1

w2
i

(w2
i + λ)2

(uTi b)
2 + 2‖b‖2

N
∑

i=1

w2
i

w2
i + λ

. (7)

2.2 Heuristic regularization

Another way of regularizing the inverse problem of equation 2 without using
an additional physical model has been implicitly introduced in an earlier
paper (Lang, 2017). As explained above, one can use any mathematical
function which consists of a small enough number of free parameters in
order to regularize an IPP, as long as it represents the expected outcome
within the accessible domain of the corresponding variable. One can fit the
Cole-Cole function (Cole and Cole, 1942):

ln(G′(ω)) = A+
B

1 + exp[C +D ln(ω)]
, (8)
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where A, B, C and D are fitting parameters, to the experimental outcome.
Since the inverse Fourier Laplace transform of equation 2, which would lead
to a closed form of the RTS, is hard to obtain despite the use of this function,
one uses the Stieltjes transform instead (Tschoegl, 1989), (Friedrich and
Braun, 1992). This procedure leads to the following form of the RTS:

H(τ) =
2

π
exp[f(τ)] sin[g(τ)] , (9)

where

f(τ) = A+
B[exp[−C −D ln(τ)] + cos(Dπ/2)]

exp[−C −D ln(τ)] + exp[C +D ln(τ)] + cos(Dπ/2)
, (10)

and

g(τ) =
B sin(Dπ/2)

exp[−C −D ln(τ)] + exp[C +D ln(τ)] + cos(Dπ/2)
. (11)

2.3 Heuristic mixing rule

The simplest physically meaningful regularization method for the inversion
of equation 1 stems from Schausberger (Schausberger, 1986). It is based
on the BSW spectrum (Baumgaertel et al., 1990) and will be referred to as
BSW method for the rest of the paper.

Since the RTS of a polydisperse polymer depends on its MMD, a MR
is needed to explain how the relaxation time τi of a polymer species with a
certain mass mi is altered by the presence of another species with mass mj

and relaxation time τj and vice versa.
As a first step, one creates a MMD ψ(m) with a predefined form. Here,

the multimodal generalized exponential (GE) distribution is used:

ψ(m) =
1

N

N
∑

i=1

γim
ai exp[−bim

ci ] , (12)

where {a}, {b}, {c} and {d} are fitting parameters and γ is a normalization
constant. Then, the different masses {m} are used to define a domain for the
relaxation times {τ} by using the connection between the longest relaxation
time of a species and its molecular mass:

τ = ζmα , (13)

where ζ is the molecular friction coefficient and α = 3.4 is taken as constant
(Schausberger, 1986). The MR for the relaxation times {τm} in the mixture
is defined as:

τi,m = ζmα
i





∑

j

ψjmj,m/mi,m





α−2

, (14)
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where mi,m = mi

(

∑

j ψjmj,m/mi,m

)1−2α
is called the effective molecular

mass. The corresponding relaxation strengths {gm} of the mixture are cal-
culated as:

gi,m = ψ2
i gi + 2

N
∑

j=i+1

ψjψigi , (15)

where one can use a distribution gi = G0ψ
2
i as input set. G0 = 0.8ρRT/mebc

is the plateau modulus, where ρ is the polymer density in the melt state,
R is the gas constant, T the absolute temperature of the melt, me the
molecular mass of entanglements and bc = 1 −

∑

i ψ
2
i . This combination

of mixing rules for the relaxation times and strengths describes the RTS
of any mixture of sufficiently sharp distributed polymer species. Since for
every sharply distributed species the RTS is BSW distributed (Baumgaertel
et al., 1990) one has to take into account that all relaxation times have to
be weighted as:

τi,j = τi,m

(

τi
τi+1

)j

, (16)

and all strengths as:

gi,j = gi,m

(

τi
τi+1

)jne

, (17)

where ne describes the slope of the RTS of a monodisperse species in the
rubbery regime. It is clear that the outcome {gi, τi} of this procedure can
be inserted in equation 1 and subsequently fitted to the measurement. The
input MMD is varied iteratively until the mean square deviation between
the measured data and the theoretical outcome is minimized.

2.4 Full mixing rule

A full physical model has been presented by Carrot and Guillet (Carrot and
Guillet, 1997) and is referred to as CG method for the rest of the paper.
The deGennes-Doi-Edwards (deGennes, 1979), (Doi and Edwards, 1986)
tube model is used to derive the relaxation strengths of a monodisperse
polymer melt, starting from the Smoluchowski equation for the molecule
dynamics. The Smoluchowski equation simplifies to a one dimensional dif-
fusion equation by the use of the tube model, which possesses a solution
directly proportional to the relaxation strength. This relaxation strength is,
of course, alternated by the presence of surrounding chains having a certain
MMD (Tsenoglou, 1991), (des Cloizeaux, 1988). Depending on the masses
of the surrounding chains, the polymer dynamics are entirely different. Four
cases can be distinguished. If the molecular mass is lower than the critical
molecular mass mc = 2me, the relaxation times depend on the molecular
mass as:

τi,r =
6

π2
(2me)

α−1

G0me
m2

i . (18)
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The corresponding relaxation strengths are Rouse distributed (Rouse, 1953),
such that:

gi,r =
π2

6
meG0ψi/mi . (19)

If the mass equals me, one has:

τ =
ζN3d4

π2kBTa2
, (20)

where N is the segment number of the polymer, d is the diameter and a is
the step length of the primitive chain. The relaxation strength for such a
species is:

g =
π2

6
G0

∑

i

ψi . (21)

For molecules of length higher than me, two cases can be distinguished.
Either the surrounding of a chain is monodisperse, then:

τi = τi,r

(

1 + τi,r

[

1

τi,m
−

1

τi,b

])−1

, (22)

where

τi,m = 3
∑

j,k,l

ψiψjψk
τj,0τk,0τl,0

τj,0τk,0 + τk,0τl,0 + τj,0τl,0

(

mi

me

)2

, (23)

τi,0 = ζmem
α−1
i , (24)

and

τi,b = τi,0

(

mi

me

)2

. (25)

The corresponding relaxation strengths are:

gi = G0ψ
2
i . (26)

Or the surrounding is polydisperse, in which case:

τi =
2τi,m,jτi,m,k

τi,m,j + τi,m,k
, (27)

where one allows for two species j and k with different τi,m, with the corre-
sponding strengths:

gi = 2G0ψi,jψi,k . (28)

This incorporates the full modern understanding of polymer dynamics into
the calculation of the RTS from a previously unknown MMD. Again, as
in the BSW method, the process of RTS generation is iterated until the
corresponding storage modulus fits the measurement outcome.
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2.5 New solution

An attempt of simplifying the full mixing rule can be readily found in the lit-
erature (Maier et al., 1998). In this MR, the functional form of the relaxation
strength in the tube model is nonlinearly superimposed with a distribution
of molecular masses, similar to the double reptation concept, see equation 26
(Tsenoglou, 1991), (des Cloizeaux, 1988). However, a difference is that the
contribution of Rouse-like modes is considered by taking the difference be-
tween the actual molecular mass and the molecular mass of entanglements
into account. Additionally, the mixing rule is allowed to take a fractal form.
An expression introduced by Thimm et al. (1999) gives the following form
for the RTS dependent MMD:

H(τ) = λ−1ψ̃(τ) , (29)

where ψ̃(τ) = ψ(τ(m)) = ψ(m),

λ =
1

β

(

α

G0

)1/β [∫ ∞

me

dmm−1H(τ)

]1/β−1

, (30)

and β is called the fractal exponent. This MR can now be combined with
the MMD given in equation 12 (Lang, 2017). Since the resulting equation
for the RTS is still self contained, rewriting is necessary in order to obtain
an explicit expression for the RTS of polydisperse polymers:

H(τ) = µG0

N
∑

i=1

γi

(

τ

ζ

)ai/α

exp

[

−bi

(

τ

ζ

)ci/α
]

, (31)

where

µ =

(

1

N

)β

ββ+1 1

α

(

∫ ∞

τ
dτ ′

N
∑

i=1

γi

(

τ ′

ζ

)ai/α

τ ′−1 exp

[

−bi

(

τ ′

ζ

)ci/α
])β−1

.

(32)
The derivation of equation 31 is given in the appendix. All of the occurring
parameters can be determined by fitting the following expression of the
storage modulus to the measurement result (Lang, 2017):

G′(ω) =
1

N

N
∑

i=1

λ̃i
νi

Γ

(

1

νi

)

L1/νi(biζ
−νi , 0)[f ′(τ, ω)] , (33)

with

f ′(τ, ω) =
ω2τ

1 + (τω)2
, (34)

where λ̃ = γζ1/ν/λ, ν = c/α, Γ(s) is the Euler gamma function and the
incomplete Laplace integral (Temme, 1987):

Lλ(s, α)[f(x)] =
1

Γ(λ)

∫ ∞

α
dxxλ−1f(x) exp[−sx] (35)
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is used. The fitting function for the loss modulus reads:

G′′(ω) =
1

N

N
∑

i=1

λ̃i
νi

Γ(
1

νi
)L1/νi(biζ

−νi , 0)[f ′′(τ, ω)] , (36)

with

f ′′(τ, ω) =
ωτ2

1 + (τω)2
. (37)

Together with the storage modulus, also the loss factor tan δ = G′′/G′ of
the polymer melt can be calculated. Since the parameter space of equa-
tion 33 is generally leading to ill-posedness of the problem, one confines the
mode number N to the smallest integer number necessary. Here, N=3 is
used in accordance with earlier findings (Lang, 2017). The prefactor λ is
contained in the definition of the storage modulus, equation 33. Therefore,
a fitting procedure must contain a first estimate of this parameter which
requires rough knowledge of the RTS. This problem is solved here by using
the heuristic regularization procedure, given in section 2.2 as a first guess
and then iteratively re-evaluating the factor λ with the new form of the RTS,
given in equation 31, when fitting equation 33 to the measurement outcome.

3 Measurements and Material

3.1 Measurements

Small amplitude oscillatory shear experiments were conducted on a strain
controlled Anton Paar MCR 302 rheometer at the Johannes Kepler Univer-
sity Linz, Austria. The sample geometry was a cone-plate assembly with
a cone angle of 1.5o and 25 mm diameter. The measurement temperature
was 190oC. The samples were pressed from granular stock material using a
Höfer laboratory press with a 25 mm diameter punch-hole.

The MMD was determined by using a Viscotec high temperature gel
permeation chromatography (HT-GPC) setup with a threefold column at
a temperature of 140oC, combined with triple detection. The setup was
calibrated using a 99 kDa polystyrene standard. Samples were prepared,
dissolving 20 mg polymer in 10 ml 1,2,4-trichloro-benzene and storage at
measurement temperature for 45 min.

3.2 Material

A commonly available batch of polydisperse polypropylene, called RA130E,
by Borealis AG was used in this study. The material data sheet can be read-
ily found online (www.borealisgroup.com/en/polyolefins/products, 2017).

Since a many-material study for the given analytical method has been
presented earlier (Lang, 2017), only this material is used here as an exem-
plary linear polydisperse polymer.
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Table 1: Choice of a priori parameters.

name value source

ζ 3x10−21 s/g Eder et al. (1989)
me 4390 g/mol Lang (2015)
ne 0.23 Schausberger (1986)
β 3.84 Lang (2015)

4 Methods

In section 2, the methods of calculation are outlined to great extent, how-
ever, computation is not feasible without presetting some parameters. Many
parameters used in the common methods are not obtainable through exper-
imental investigation of industrial polymer grades.

In table 1, the important a priori parameters to all methods using mixing
rules are given. It has to be emphasized that most values do not stem from
experimental evidence, but have been obtained by preliminary numerical
studies (Thimm et al., 1999; Lang, 2015).

5 Results

Since the measurement of the storage modulus and its approximation by the
different theoretical methods lie at the heart of the given problem, they are
shown in figure 1(a). In addition, fitting results for the loss modulus and
loss factor obtained from the new method are shown in figure 1(b).

Figure 1: (a) Storage modulus as a function of frequency, compared to
different theoretical fits. (b) Loss modulus and loss factor of the new method
compared to the experimental outcome.

It is clear that methods capable of correctly fitting the measurement, in
general, have a higher chance to give correct MMDs and RTS. However, no
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direct correlation between a fitting result and the correctness of the outcome
exists, as is discussed in section 6.

Since the regularization procedure of the OD method uses the measure-
ment as input, it is not included in figure 1(a).

Regularization alone, by means of the OD method or the heuristic reg-
ularization, results in RTS for the given material. A comparison of results,
including also the BSW and the new solution, is shown in figure 2.

Figure 2: Relaxation time spectra from regularization, compared to the new
method.

It can be seen that the curve of the OD model is not spanning the entire
interesting range of relaxation times. This feature is discussed in section 6.

During the approximation of the storage modulus, the theoretical meth-
ods based on mixing rules update both, the MMD and the RTS, until the
error δ between the measured data points and the calculated storage mod-
ulus is minimized. The resulting MMDs are shown in figure 3 and the
corresponding RTS are presented in figure 4.

Figure 3: Molecular mass distribution obtained from different mixing rules
compared to HT-GPC data.
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Figure 4: Relaxation time spectra from methods based on mixing rules.

Table 2: Errors of the storage modulus fit for different methods.

method error [%]

BSW 0.22
CG 3.57
Cole-Cole 0.25
analytical 0.1

6 Discussion

From figure 1(a) it is evident that the new curve fitting procedure gives the
best overall fit to the measured storage modulus of the industrial polypropy-
lene grade. Figure 1(b) shows that also the loss modulus and loss factor are
approximated well by the new method. The fits obtained from the BSW and
Cole-Cole methods are reasonably good in the high frequency regime, but
diverge from the measurement in the low frequency regime. Surprisingly,
the worst fit to the data is obtained by using the CG procedure. However,
since the CG curve for the storage modulus lies above the measurement at
low frequencies and below at high frequencies, the shown result nonetheless
represents a minimal error δ. The errors of all shown fits are given in table 2.

It needs to be emphasized that a good fit to the storage modulus alone
does not necessarily provide a good representation of the MMD or the RTS.
If the fit of the storage modulus represents a minimal error, the correspond-
ing solution is always the best obtainable solution for a given method. There-
fore, a physical comparison of methods based on the fits to the storage mod-
ulus measurement is not meaningful. The fits are shown here for the sake
of completeness only and they can be used during application of a method
to test whether a minimal error was obtained.

A first comparison of method outcomes can be seen in figure 2, where
the RTS predicted by the OD and Cole-Cole method are compared to the
new solution as well as the BSW method. One can see that the OD method
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describes the RTS well at intermediate relaxation times, but diverges from
the novel solution at higher and lower relaxation times. The Tikhonov reg-
ularized spectrum lies between the BSW and the new spectrum. However,
large parts of the spectrum are not covered by the OD method. The reason
is that the OD method loses its constraints at low as well as high relax-
ation times, corresponding to ω−1 values beyond the measurement range
for G′(ω). Since the inverse of the measured range of ω is physically not
directly correspondent to the range of relaxation times for which a model
can be used, one can identify this as a disadvantage of the OD method as
compared to other methods.

In contrast to the OD method, the Cole-Cole regularization method gives
a full prediction of the RTS. The outcome, however, diverges from the new
as well as the BSW result at low and high relaxation times, underestimat-
ing the relaxation strengths at low relaxation times and overestimating the
strengths at high relaxation times. The high relaxation time mismatch can
be explained by a misfit of the measured storage modulus curve in the low
frequency regime, as is seen from figure 1(a). In the low relaxation time
regime, the difference in RTS between the Cole-Cole regularization and the
new solution most likely results from missing constraints for the Cole-Cole
fitting procedure.

Since the novel method relies on a robust first estimate of the RTS in the
full interesting relaxation time regime, the heuristic regularization method
is chosen for this purpose.

Figure 3 shows a comparison of the MMDs obtained from different meth-
ods to the HT-GPC measurement. It is evident that the result of the BSW
method is profoundly different from the measured MMD. The MMD ob-
tained via the CG method, in contrast, gives a very good estimate for low
molecular masses and overestimates the higher masses. This is a first inter-
esting observation in the sense that it hints at the necessity of a full physical
model in order to describe the relation between MMD and storage modulus
correctly.

The discrepancies between the BSW and the CG method entirely result
from the fact that Rouse-like modes are completely neglected in the BSW
method. As low mass compounds contribute to both, the dilation of tubes
for longer molecules and the importance of fast relaxation processes, they
cannot be regarded as if they were moving via double reptation.

In the high molecular mass regime, the CG method also overestimates the
occurrence of masses in comparison to the measurement. One can attribute
this also to the fact that Rouse modes are more effective in tube dilation
than taken into account by equations 22 to 28. In the CG model, Rouse
modes contribute to those parts of the MRs insofar as the difference between
relevant molecular mass and entanglement mass is considered. However, no
Rouse modes are directly used to dilate the underlying double reptation.

Following this train of thought, it might seem surprising that the new
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result describes the MMD obtained from HT-GPC well. The fact that the
fractal reptation exponent holds a value higher than 2 thereby points in the
direction that double reptation is not enough to describe the effect of a poly-
disperse surrounding on the motion of a single chain. This, however, is a
slightly misleading hint, since the magnitude of the reptation exponent β de-
pends also on the importance of Rouse modes, as has been shown by Thimm
et al. (2000). The difference between the relevant molecular mass and the
molecular mass of entanglement, using the higher reptation exponent, is ac-
counting for the importance of Rouse-like modes in the high molecular mass
regime. This holds for certain materials, as has been discussed in an earlier
work (Lang, 2017). A detailed analysis of the magnitude of the reptation
coefficient has been conducted by Friedrich et al. (2009). Their work also
adresses an important issue of the new model, namely, the reproduction of
a nearly monodisperse MMD. Due to the assumed single exponential time
decay, as is usual for the generalized Maxwell model, the new result shown
here does not apply to nearly monodisperse polymer melts. Particularly,
the given series of exponential functions representing the MMD cannot be
reduced to a delta distribution (Friedrich et al., 2009).

In the peak mass region of the MMD, one can observe that the new result
does not cover all details of the measurement. Since the overall structure
of the MMD resulting from the novel method has been discussed in detail
elsewhere (Lang, 2017), this detail is ignored here, also regarding the fact
that an extended review of the new method in terms of a many-material
study has been given earlier. It has been shown there that polymer melts
with a multi-modal MMD can be represented by the new curve fitting results
as well.

RTS from different methods are compared in figure 4. In comparison
to figure 3, a direct correlation between MMD and RTS can be detected.
This could be an indication for correctness of the analytical prediction by
Thimm et al. given in equation 29. They claim that the form of the MMD
is equivalent to the form of the RTS, differing only by a scaling parameter
and a change in variables. This result is fully recovered by the new method.

The presented method provides a new way of obtaining relaxation time
spectra from rheometric data of industrial grade polymers with a higher
precision than other models.

In the novel method, unfortunately, the physical meaning of the individ-
ual parameters, resulting from a completely adaptable functional form of the
MMD, as given in equation 12, is lost. Despite the given differences in the
mixing rule, no physical meaning of the parameters contained in the RTS of
the new method can be extracted. Nonetheless, the given method is one of
a few curve fitting forms available for polydisperse polymer melts (Friedrich
et al., 2009), all of which contain a certain number of fitting parameters.
These fitting parameters are either introduced ad hoc, as in the case of the
BSW RTS (Baumgaertel et al., 1990), or for the purpose of regularization.
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7 Conclusions

A new form of the MMD dependent RTS of linear polydisperse polymer
melts is presented. Despite the fact that this form relies on a simplified MR
for the underlying polymer dynamics, the new method is capable of correctly
predicting the MMD as well as the RTS of industrial polymer melts with a
higher accuracy than other methods.

Appendix

Starting from the self-contained form of the RTS:

H(τ) =
1

N
β

(

G0

α

)1/β (∫ ∞

τe
dττ−1H(τ)

)1−1/β N
∑

i=1

γi

(

τ

ζ

)ai/α

exp

[

−bi

(

τ

ζ

)ci/α
]

,

(38)
one can multiply both sides with τ−1 and integrate over τ from τe to ∞,
giving:

∫ ∞

τe
dττ−1H(τ) =

(

β

N

)β G0

α

(

∫ ∞

τe
dτ

N
∑

i=1

γiζ
−ai/ατai/α−1 exp

[

−bi

(

τ

ζ

)ci/α
])β

.

(39)
By recognizing that:

(

∫ ∞

τe
dτ

N
∑

i=1

γiζ
−ai/ατai/α−1 exp

[

−bi

(

τ

ζ

)ci/α
])β

= β

∫ ∞

τe
dτ

N
∑

i=1

γiζ
−ai/ατai/α−1 exp

[

−bi

(

τ

ζ

)ci/α
]

×

(

∫ ∞

τ
dτ ′

N
∑

i=1

γiζ
−ai/ατ ′ai/α−1 exp

[

−bi

(

τ ′

ζ

)ci/α
])β−1

, (40)

one can rewrite equation 39 as:
∫ ∞

τe
dττ−1H(τ) =

(

1

N

)β

ββ+1G0

α

∫ ∞

τe
dτ

N
∑

i=1

γiζ
−ai/ατai/α−1 exp

[

−bi

(

τ

ζ

)ci/α
]

×

(

∫ ∞

τ
dτ ′

N
∑

i=1

γiζ
−ai/ατ ′ai/α−1 exp

[

−bi

(

τ ′

ζ

)ci/α
])β−1

. (41)

Assuming that the integral vanishes if the integrand goes to zero, equation 31
is obtained.
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