001     848357
005     20220930130151.0
024 7 _ |a 10.2136/vzj2017.12.0212
|2 doi
024 7 _ |a 2128/19264
|2 Handle
024 7 _ |a WOS:000439708700001
|2 WOS
024 7 _ |a altmetric:44599099
|2 altmetric
037 _ _ |a FZJ-2018-03598
082 _ _ |a 550
100 1 _ |a Schnepf, A.
|0 P:(DE-Juel1)157922
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Statistical Characterization of the Root System Architecture Model CRootBox
260 _ _ |a Madison, Wis.
|c 2018
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531122441_7377
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The connection between the parametrization of three-dimensional (3D) root architecture models and characteristic measures of the simulated root systems is often not obvious. We used statistical methods to analyze the simulation outcome of the root architecture model CRootBox and built meta-models that determine the dependency of root system measures on model input parameters. Starting with a reference parameter set, we varied selected input parameters one at a time and used CRootBox to compute 1000 root system realizations as well as their root system measures. The obtained data sets were then statistically analyzed with regard to dependencies between input parameters, as well as distributions and correlations between different root system measures. While absolute root system measures (e.g., total root length) were approximately normally distributed, distributions of ratios of root system measures (e.g., root tip density) were highly asymmetric and could be approximated with inverse gamma distributions. We derived regression models (meta-models) that link significant model parameters to 18 widely used root system measures and determined correlations between different root system measures. Statistical analysis of 3D root architecture models helps to understand the impact of input parametrization on specific root architectural measures. Our developed meta-models can be used to determine the effect of parameter variations on the distribution of root system measures without running a full simulation. Model intercomparison and benchmarking of root architecture models is still missing. Our approach provides a means to compare different models with each other and with experimental data.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huber, K.
|0 P:(DE-Juel1)144686
|b 1
|u fzj
700 1 _ |a Landl, M.
|0 P:(DE-Juel1)165987
|b 2
|u fzj
700 1 _ |a Meunier, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Petrich, L.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schmidt, V.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.2136/vzj2017.12.0212
|g Vol. 17, no. 1, p. 0 -
|0 PERI:(DE-600)2088189-7
|n 1
|p
|t Vadose zone journal
|v 17
|y 2018
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/848357/files/651890.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/848357/files/651890.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/848357/files/651890.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/848357/files/651890.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/848357/files/651890.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/848357/files/vzj-17-1-170212.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/848357/files/vzj-17-1-170212.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/848357/files/vzj-17-1-170212.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/848357/files/vzj-17-1-170212.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/848357/files/vzj-17-1-170212.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:848357
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144686
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165987
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21