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Statistical Characterization of the Root 
System Architecture Model CRootBox
A. Schnepf,* K. Huber, M. Landl, F. Meunier, L. Petrich, 
and V. Schmidt
The connection between the parametrization of three-dimensional (3D) root 
architecture models and characteristic measures of the simulated root systems is 
often not obvious. We used statistical methods to analyze the simulation outcome 
of the root architecture model CRootBox and built meta-models that determine 
the dependency of root system measures on model input parameters. Starting 
with a reference parameter set, we varied selected input parameters one at a time 
and used CRootBox to compute 1000 root system realizations as well as their root 
system measures. The obtained data sets were then statistically analyzed with 
regard to dependencies between input parameters, as well as distributions and 
correlations between different root system measures. While absolute root sys-
tem measures (e.g., total root length) were approximately normally distributed, 
distributions of ratios of root system measures (e.g., root tip density) were highly 
asymmetric and could be approximated with inverse gamma distributions. We 
derived regression models (meta-models) that link significant model parameters 
to 18 widely used root system measures and determined correlations between 
different root system measures. Statistical analysis of 3D root architecture models 
helps to understand the impact of input parametrization on specific root archi-
tectural measures. Our developed meta-models can be used to determine the 
effect of parameter variations on the distribution of root system measures with-
out running a full simulation. Model intercomparison and benchmarking of root 
architecture models is still missing. Our approach provides a means to compare 
different models with each other and with experimental data.

Abbreviations: 3D, three-dimensional; HMD, half mean distance; KDE, kernel density estimator; SUF, stan-
dard root water uptake fraction.

Root architecture and phenotypic plasticity determine a plant’s success to acquire 
belowground resources such as water and nutrients (Lynch, 2007). Experimental investi-
gation of root system development, however, is a laborious task due to the opaque nature 
of the soil that makes direct measurements difficult. Researchers therefore usually resort 
to simplified experimental designs and derive root system measures from plants grown in 
artificial systems such as hydroponics or rhizotron boxes (Nagel et al., 2015; Atkinson et 
al., 2015) or from observations through rhizotubes in the field, where only small sections 
of the root system are visible (Garré et al., 2012). Several studies, however, showed that 
laboratory and field-derived phenotypic root properties are poorly related, and extrapola-
tion from single root observations to the entire root system is delicate (Wojciechowski et 
al., 2009; Poorter et al., 2016).

A possibility to overcome these limitations is provided by three-dimensional (3D) 
root architecture models, which allow large numbers of different root systems to be gener-
ated from a range of plant-specific and environmentally influenced input parameter sets 
(Schnepf et al., 2018), which can then be used to deduce characteristic root traits. Models 
of root architecture and function have become readily available (Dunbabin et al., 2002; 
Schnepf et al., 2018; Postma et al., 2017; Pagès et al., 2014) and provide a means to effi-
ciently analyze different plant species and their performance in different environments 
(Meunier et al., 2016). Most models use comparable input parameter sets that include 
parameters influencing the total size of a root system (e.g., growth speed, branching density) 
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as well as the shape of a root system (e.g., tropism and tortuosity 
parameters) (Bingham and Wu, 2011). Furthermore, most models 
have stochastic components such that the same parameter set may 
produce many different realizations. However, to our knowledge, 
none of these models has so far been subject to thorough statisti-
cal analysis regarding the dependence of root system measures on 
model parameterization. We chose a terminology that explicitly 
distinguishes between the “model input parameters,” from which 
we compute the 3D root architecture using CRootBox, and sta-
tistical “measures,” which we compute from the resulting 3D root 
architecture. Both could be ecological “traits.” For example both 
the model input parameter “branching angle” and the “root length 
density” could be considered traits.

Measures to Characterize Root Architectures
Classical measures to characterize root system architectures 

include total root length, root surface area, and root volume. 
While total root length is related to the soil volume explored by 
the root system, root surface area is important for uptake and exu-
dation mechanisms that occur across the root–soil interface, and 
root volume can be seen as a measure of carbon investment into 
a specific root structure. The number of branches (or number of 
root tips) gives information about the degree of branching within 
a root system. Maximum rooting depth and maximum horizontal 
spread of the root system are negatively correlated and determine 
whether the root system is of steep and deep (Lynch, 2013) or of 
shallow appearance, which has direct implications on root forag-
ing. While deep-rooting plants can take up water from deeper soil 
layers and are thus advantageous in dry climates and during drought 
periods, shallow-rooting plants enhance the exploration of topsoil 
layers, where nutrient availability is greatest in many soils (Lynch 
and Brown, 2001). Irrespective of the specific location, the convex 
hull determines the smallest convex set that encloses the whole root 
system, while the rhizosphere volume is a measure of the soil volume 
that is actually influenced by the root system. The size of the rhi-
zosphere volume depends on the effective soil diffusion coefficient, 
which varies for different nutrients, as well as by root age, root length 
and radius, and overlap between rhizospheres of individual root axes, 
i.e., the foraging performance (Landl et al., 2018).

To compare root systems of different plant species with each 
other, ratios of root system measures are used. Normalizing the 
number of root tips, total root length, root surface area, and root 
volume by the volume of the convex hull results in root tip density, 
root length density, root surface area density, and root volume den-
sity. We chose the convex hull because our simulations refer to the 
root system of a single plant. Under field conditions, the volume 
of the convex hull would be replaced by the volume of the sampled 
soil and, potentially, root systems from several plants would con-
tribute to the root system measures. While root length density is 
one of the most widely measured traits in many laboratory or field 
experiments (Zuo et al., 2004; van Noordwijk et al., 1985), root 
surface area density is the most relevant parameter in water flow 
and solute transport models (Couvreur et al., 2014).

Root water and nutrient uptake as well as transport toward 
the shoot is determined by root hydraulic properties, which are 
thus—next to root architecture parameters—key components for 
root system functioning (Vadez, 2014). To describe the hydraulic 
architecture of an entire root system, root hydraulic properties 
such as radial and axial conductivities are related to root system 
measures. Root hydraulic architecture measures include root 
system equivalent conductance (Krs) and standard root water 
uptake fraction (SUF), which represent, respectively, the abil-
ity of the root system to take up a certain water volume under a 
given water potential difference between the root collar and an 
homogeneous soil and the water uptake by a root segment rela-
tive to the total water uptake of the root system. These variables 
were calculated by solving the water flow in the generated root 
system architectures under homogeneous soil conditions, using 
the algorithm of Meunier et al. (2017b). A water potential was 
imposed at the root collar and the resulting stem sap flow was 
used to calculate the root system conductance. The water uptake 
by each single segment served then to derive the standard uptake 
fraction of each individual segment. The root hydraulic conduc-
tivities (function of root age and order) were taken from Doussan 
et al. (2006) and considered as identical for all root systems. The 
mean depth of standard root water uptake is then the product of 
SUF and the depth of the respective root segment summed across 
all segments. To allow comparisons of the hydraulic architecture of 
differently sized root systems, the root system equivalent conduc-
tance is normalized by root length or root surface area (Couvreur 
et al., 2012). A further important measure for the characteriza-
tion of root water uptake is the root half mean distance (HMD) 
which affects water depletion in the soil and is approximated with 
the classical approach of Newman (1969) as HMD = (pRLD)−0.5, 
where RLD is the root length density. An overview of the differ-
ent characteristic root system measures analyzed in this work is 
given in Table 1.

Statistical Tools to Analyze Characteristic 
Root System Measures from Root Architecture 
Model Outputs

Statistical methods have so far been mainly used to group 
different root systems into plant functional types (Bodner et al., 
2013) or similar genotypes (Chen et al., 2017) based on principal 
component analysis. Furthermore, nonlinear least-square fitting 
has been used to fit model parameters based on modeled and 
measured root lengths in homogeneous root groups (Zhang et 
al., 2003). Bingham and Wu (2011) analyzed the effect of vary-
ing model input parameters on two root system measures, total 
root length and root distribution in the soil profile, in a sensitivity 
analysis. Pagès (2011) investigated the impact of different model 
input parameters as well as interactions between these parameters 
on the foraging performance of a root system.

The connection between the complex parameterization of 3D 
root architecture models and characteristic measures of the simu-
lated root systems is often not obvious. Meta-models, which can 
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determine the effect of parameter variations on any of the different 
measures without running a full simulation, have recently been 
developed for root hydraulic measures (Meunier et al., 2017a); for 
root system measures, however, they are completely missing. To our 
knowledge, no stochastic root architecture model has so far been 
thoroughly analyzed with statistical methods.

Objectives
The objective of this work was to use statistical analysis meth-

ods to investigate the dependence of key root system measures on 
model input parameters using the example root architecture model 
CRootBox, which was chosen for its speed, efficiency, and flexibil-
ity as well as its acceptance within the root modeling community. 
For future work, it would, however, be beneficial to also apply the 
presented analysis methods to other root architecture models and 
even experimental data sets to allow comparisons of different sim-
ulators and validate dependencies between root system measures 
and model input parameters with experimental data.

In this study, we
 ʶ analyzed the distributions of characteristic measures of root 

architecture, e.g., maximum rooting depth with respect to 
model parameters of interest, e.g., initial growth speed

 ʶ derived statistical meta-models to link changes in individual 
model input parameters to the distributions of characteris-
tic measures of root architecture, which will be helpful for 

CRootBox users to estimate the impact of a parameter change 
on the model’s outcome

 ʶ elucidated correlations between different measures of root 
architecture

 ʶ computed the correlation changes between different architec-
ture measures due to variations in individual model parameters

 6Materials and Methods
The Root Architecture Model CRootBox

CRootBox is a recent root architecture model (Schnepf et al., 
2018). It is written in C++, but also has a Python binding that 
allows scripting in Python for most applications. Furthermore, a 
web application that is based on CRootBox enables the user to 
quickly create, modify, and export root architectures from a data-
base that currently includes 22 plant species.

CRootBox is fully described in Schnepf et al. (2018). Briefly, 
it is a generic model that is not focused on a specific plant species 
but is able to simulate the root architectures of any monocoty-
ledonous and dicotyledonous plant. It distinguishes different 
types of roots, i.e., tap roots, basal roots, shoot-borne roots, and 
lateral roots, and each root type is defined by a set of different 
model parameters. Basal and apical root zones define the length 
of the unbranched root before the first and behind the last branch, 
respectively. Branch spacing describes the distance between two 
successive branches and thereby determines branching density and 
the number of branches for a specified maximum root length. Root 
elongation is defined by a negative exponential function whose 
initial slope is determined by the initial growth speed (following 
the approach of Pagès et al., 2004) and whose asymptote is speci-
fied by the maximal root length. The insertion angle defines the 
angle from the vertical under which primary roots emerge (a larger 
angle thus leads to a more shallow root system), while the branch-
ing angle describes the initial angle between a branch and its parent 
root. The model is stochastic because of two aspects. First, the 
reorientation of a newly emerged root segment of defined length 
is determined by a random optimization algorithm that selects, 
from N randomly computed values of the deflection angle s, the 
value with the closest proximity to the desired growth direction 
(tropism). For details, see Schnepf et al. (2018, Appendix A, sec-
tion “Changes in root tip heading”). Second, all parameters are 
assumed to be normally distributed with user-defined mean and 
standard deviation. Thus, each realization of the same parameter 
set results in a different root system with variability depending on 
the standard deviations of the model input parameters, the type 
of tropism, and the random deflection angle s. For our statistical 
analysis, we used the model parameters of the sample plant Zea 
mays (L.) as a reference data set. The parameter set was derived 
from the CRootBox model parameter database (Schnepf et al., 
2018; Leitner et al., 2014) and is shown in Table 2. If the model 
structure remains the same, the dependence of root system mea-
sures on model input parameters is expected to remain qualitatively 
similar for different parameterizations, and the use of one single 

Table 1. Characteristic root system measures

Variable Name and description

RL total root length, cm

RSA total root surface area, cm2

RV total root volume, cm3

zmax maximum rooting depth, cm

rmax maximum horizontal spread (radius of the confining cylinder), cm

conv volume of the convex hull, cm3

NR number of root tips or branches

Vrhizo rhizosphere volume for phosphate, cm3

RND root tip density (NR/conv), cm3

RLD root length normalized by the volume of the convex hull (RL/conv), 
cm cm−3

RSAD root surface area normalized by the volume of the convex hull 
(RSA/conv), cm2 cm−3

RVD root volume normalized by the volume of the convex hull (RV/
conv), cm3 cm−3

VDrhizo rhizosphere volume for phosphate normalized by the volume of the 
convex hull (Vrhizo/conv), cm3 cm−3

Krs equivalent conductance of the root system, cm2 d−1†

Krs A equivalent conductance of the root system per unit root area (Krs/
RSA), d−1

Krs L equivalent conductance of the root system per unit root length (Krs/
RL), cm d−1

zSUF mean depth of standard root water uptake, cm

HMD half mean distance between roots, cm

† cm2 d−1 @ cm3 hPa−1 d−1.
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reference parameter set is thus justified. As specified in the analysis 
below, we performed altogether 53,000 simulations of 3D root 
architectures based on the reference parameter set and its varia-
tions. A 3D visualization of a particular realization of this root 
system is shown in Fig. 1.

Analysis Methods
We selected six model input parameters from the reference 

parameter set in Table 2 that were expected to have diverse effects 
on root architecture development. For each of these six parameters, 
we chose a minimum and maximum value based on lower and 
upper parameter bounds of Zea mays found in literature (Leitner 
et al., 2010; Leitner et al., 2014; Pagès et al., 2014; Postma and 
Lynch, 2011). Standard deviations of the parameters were kept 
constant (Table 3). We then varied the means of each of the six 
parameters one at a time in four increments in the case of N, 
nine increments in the case of s, and in 10 increments otherwise 
between the identified minimum and maximum value, resulting 

in 53 different parameter sets altogether. Subsequently, we used 
CRootBox to simulate n = 1000 root system realizations for each 
of the 53 parameter sets and computed their characteristic root 
system measures (Table 1). Figure 1 shows a 3D visualization of a 
particular realization of a root system generated with the standard 
input parameter set given in Table 1. Figure 2 shows 3D visual-
izations of the root systems generated with the minimum and 
maximum parameter values specified in Table 2. The obtained 
data sets were then analyzed statistically as described below.

The probability distribution of a random root system measure 
X is described by n sample values x1, …, xn that can be visualized, 
e.g., by a histogram. As a first step, we estimated the probability 
density function f X of X using a nonparametric approach, namely 
a kernel density estimator (KDE). A KDE of f X is defined as
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where the Gaussian kernel Kl(s,x) = F(|x − s|/l) is used with F(s) 
= (2p)−1/2exp[−(1/2)s2]. The bandwidth l > 0 is selected using 
Scott’s rule (Scott, 1979). Intuitively, each point s is assigned a 
value Kl(s,xi) corresponding to the distance between s and the ith 
realization xi of the random root system measure X. The super-
position of all these values of every sample forms a KDE. One 
advantage of a KDE compared with directly investigating the 
histogram is that it is much easier to get an understanding of the 
underlying probability distribution because a KDE is not based on 
discrete bins and produces smooth estimates of the density func-
tion. However, being a nonparametric estimator, it does not give 
the concise representation of a parametric approach.

We account for this in a further step where we fit and compare 
several types of parametric distributions. An important type of 
probability distribution is the normal distribution given by the 
density
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with mean m and variance s2 > 0. Furthermore, for skewed data, 
several parametric distributions are available. The lognormal 
distribution is given by X = exp(Y), where Y denotes a normally 

Table 2. Model parameter set of Zea mays derived from the CRootBox 
model parameter database (Zea_maize_4_Leitner_2014) (Schnepf et 
al., 2018; Leitner et al., 2014).

Variable Description Axial roots
First-order 
laterals

lb basal root zone, cm 0.5 (0.5)† 0

la apical root zone, cm 18.1 (1.81) 8.8

ln branch spacing, cm 0.5 (0.5) 1.2 (0.12)

lmax maximum root length, cm 180.1 (18.01) 8.8

r initial elongation rate, cm d−1 2.94 (0.294) 0.75 (0.075)

a root radius, cm 0.13 (0.013) 0.05 (0.005)

q insertion or branching angle, ° 80 (8.0) 85 (8.5)

tropism N number of additional trials 0.5 0.5

tropism s range of the random deflection 
angle, ° cm−1

5.7 5.7

tropism type gravitropism exotropism

maxB maximal number of basal roots 5

simtime simulation time, d 60

† Standard deviations in parentheses.

Fig. 1. Three-dimensional visualization of root architecture simulated 
by CRootBox using the reference parameter set of Table 1.

Table 3. Ranges of analyzed model input parameters of basal roots.

Model parameter Reference Min. Max.

Axial root branch spacing (ln), cm 0.5 (0.5)† 0.5 (0.5) 2 (0.5)

Maximal number of basal roots (maxB   ) 5 4 40

Initial elongation rate (r), cm d−1 2.94 (0.294) 1 (0.294) 3 (0.294)

Range of random deflection angle (s), 
° cm−1

5.7 0 5.7

Insertion or branching angle (q), ° 80 (8.0) 40 (8.0) 85 (8.0)

Number of additional trials (N) 0.5 0 2

† Standard deviations in parentheses.
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distributed random variable. Another important example is the g 
distribution given by the density
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for s > 0 with shape kG > 0, scale qG > 0, and location parameter aG, 
where G denotes the gamma function. The inverse gamma distribu-
tion is defined as follows: Let Y be gamma distributed, then X = 
1/Y is inverse gamma distributed and the density of X is given by
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with shape 1-Ga  > 0, scale 1-Gb  > 0, and location parameter 1-Gq . 
The parameters of the above (parametric) probability distributions 
were estimated using the maximum-likelihood method; the type 
of the parametric distribution was chosen manually by comparing 
the visual fit of its density to the KDE.

Additionally, so-called Q-Q (quantile–quantile) plots were 
used to evaluate the goodness of fit. More precisely, a Q-Q plot is 
a method to visually compare two distributions. Let FX and FY be 
cumulative distribution functions. The Q-Q plot is then given by 
s ® [FX

−1(s), FY
−1(s)] for s Î (0,1), where F−1 denotes the inverse 

function of F, the so-called quantile function. In our case, FY is the 

empirical distribution function of the sample x = (x1, …, xn) and it 
is thus possible to rewrite the formula above as i ® [FX

−1(i/n), x(i)] 
for i = 1, …, n, where x(i) is the (standardized) order statistics of the 
sample x. It is clear that if the two distributions fit perfectly, we 
get a straight line with a 45° angle. If the Q-Q plot is steeper than 
this line, then FY is more dispersed than FX and vice versa. This 
allows us in particular to compare the skewness (S-shape) and the 
tails of the two distributions graphically. For further information 
on Q-Q plots, see Gibbons and Chakraborti (2010).

To analyze the dependence of a descriptor z of a root system 
measure (dependent variable) on an input parameter p (regressor 
variable), we use polynomial regression models. That is, our model 
is z = b0 + b1p + b2p2. The coefficients bi are determined by the 
ordinary least squares method. The decision if a polynomial of 
degree 1 or 2 is used, i.e., whether b2 is fixed to be 0, is done manu-
ally by maximizing the coefficient of determination R2, which is 
computed using leave-one-out cross-validation (Hastie et al., 2009). 
In our case, for a selected model input parameter, we are mapping 
its value p, for example, to the mean value z = (1/n)S 1

n
i= xi of all 

realizations x1, …, xn of a root system measure given p.
We have discussed above how descriptors of single root 

system measures can depend on a given input parameter, but it 
is also of great interest if and how root system measures depend 
on each other. For this reason, we consider the sample correla-
tion coefficient

Fig. 2. Three-dimensional visualization of root architectures simulated by CRootBox using the reference parameter set of Table 1 and setting the six 
input parameters selected for variation—branch spacing (ln), maximal number of basal roots (maxB), initial elongation rate (r), range of random deflec-
tion angle (s), insertion or branching angle (q), and number of additional trials (N)—one at a time to minimum and maximum values of the respective 
parameter range (Table 2).



VZJ | Advancing Critical Zone Science p. 6 of 11

 ( )
( )( )

( ) 2 21
,

1
ˆ

n
i i

i x y

x x y y
r x y

n s s=

- -
=

-
å

where x  and y  are the sample means and 2
xs  and 2

ys  are the 
sample variances of x = x1, …, xn and y = y1, …, yn. In our case, x and 
y correspond to samples of two characteristic root system measures 
X and Y of a given input parameter configuration.

 6Results and Discussion
All the analyses can be reproduced by using the data in HDF5 

format and the Jupyter Notebook, which can be downloaded from 
our publication archive on the github repository of CRootBox: 
https://github.com/Plant-Root-Soil-Interactions-Modelling/
CRootBox/tree/master/publication%20archive/VZJ%202018. 
The resulting pdf of the analysis can also be downloaded there.

Due to the large amount of data, we focus here only on selected 
results; the complete analysis can be found in the Supplemental 
Material S1: Complete Analysis.pdf (available at https://github.
com/Plant-Root-Soil-Interactions-Modelling/CRootBox/tree/
master/publication%20archive/VZJ%202018).

Probability Density Functions
All absolute root system measures (i.e., zmax, rmax, conv, RL, 

RSA, RV, NR, Vrhizo) were approximately normally distributed. 
The parameters of the fitted normal distributions, however, 
varied with changing model input parameters. Root measures 
based on ratios (i.e., RND, RLD, RSAD, RVD, and VDrhizo) 
were distributed according to the complex distribution function 
for ratios of correlated normally distributed variables derived by 
Hinkley (1969). In most cases, they showed skewed probability 
distributions, which could be well approximated with inverse g dis-
tributions, whose parameters, again, depended on the model input 
parameterization. This can be illustrated by the example of root 
tip density (RND): For low values of the maximal number of pri-
mary roots (maxB  ), the probability distribution of RND is strongly 
positively skewed, while the skewness becomes less for larger values 
of maxB (Fig. 3). In most cases, the Q-Q plots showed good agree-
ment between sample data and theoretical fit, suggesting that the 
fitted normal or inverse g distributions are valid approximations. 
The probability distributions for all root system measures are pro-
vided in the Supplemental Material S1 on github. It follows from 
the differences in skewness that it is required to correctly sample 
from these distributions to appropriately represent root system or 
plant diversity. Otherwise, we could miss some “extreme” root sys-
tems that might be the most suited under extreme conditions such 
as water stress, drought stress, nutrient limitations, etc.

Regressions
Here, we describe and interpret the impact of selected model 

input parameters on root system measures using the fitted regres-
sion models. An overview of the relationships is given in Fig 4. 

Figure 5 visualizes the dependence of root system measures on 
model input parameters by means of three examples.

Variations in branch spacing ln have no influence on root 
system measures defining the shape of the root system (zmax, 
rmax, or conv) but significantly impact total root system size, 
Vrhizo, and root hydraulic architecture measures (Krs, Krs L, and 
Krs A). Absolute measures defining the total size of a root system 
(RL, RSA, RV, and NR), Vrhizo, as well as ratios including these 
measures (RND, RLD, RSAD, RVD, and VDrhizo) decrease 
nonlinearly with larger branch spacing. The half mean distance 
between roots (HMD) increases linearly with greater values of 
ln. As expected, Krs, which predominantly depends on the sur-
face of the root system, decreases nonlinearly with greater values 
of ln. Measures of unit root system conductance (Krs L and Krs 

A), however, increase with greater ln, which is caused by a greater 
decline rate in Krs than in RL or RSA. Due to the length differ-
ence between the apical and basal root zones (the apical root zone 
is generally longer), which becomes important when laterals are 
scarce, ZSUF increases nonlinearly with greater values of ln.

In contrast to branch spacing, variations in the insertion 
angle q have no impact on measures defining the total size of a 
root system (RL, RSA, RV, and NR), Vrhizo, or root hydraulic 
architecture measures (Krs, Krs L, and Krs A) but strongly influ-
ence the shape of a root system. A greater insertion angle leads to 
a shallower root system and thus to lower zmax and zSUF and larger 
rmax. The volume of the convex hull increases linearly with greater 
q. Ratios including a measure describing the total size of the root 
system as well as conv (RND, RLD, RSAD, RVD, and VDrhizo) 
decrease nonlinearly with greater q. A larger insertion angle leads 
to a more widespread root system and thus also to a larger HMD.

A greater number of axial roots, maxB, leads to a linear 
increase in measures describing the total size of the root system 
(RL, RSA, RV, and NR) as well as Vrhizo. It also increases the like-
lihood of single roots growing deeper and spreading wider and 
thus results in greater Zmax, rmax, and conv. An increase in zSUF is 
perceptible, however, not statistically significant. Ratios including 
conv (RND, RLD, RSAD, RVD, and VDrhizo) increase linearly 
with increasing maxB. A larger number of axial roots leads to a 
denser root system and thus to a decrease in HMD. While Krs 
increases with greater values of maxB, measures of unit root system 
conductance (Krs L and Krs A) decrease due to a lower growth rate 
of Krs than of RL or RSA.

Higher initial growth speed, r, leads to increases in root 
system measures defining the total size of a root system (RL, RSA, 
RV, and NR) as well as Vrhizo and Krs. This increase is nonlinear 
because root elongation follows a negative exponential function 
whose initial slope is determined by the initial growth speed 
and whose asymptote is specified by the maximal root length. 
Higher values of r also lead to greater zmax, rmax, conv, and zSUF. 
Ratios that include both a measure describing the total size of the 
root system and conv (RND, RLD, RSAD, RVD, and VDrhizo) 
decrease nonlinearly with increasing values of r. This is caused by 
a larger growth rate of conv than of root measures describing the 

https://github.com/Plant-Root-Soil-Interactions-Modelling/CRootBox/tree/master/publication
https://github.com/Plant-Root-Soil-Interactions-Modelling/CRootBox/tree/master/publication
https://github.com/Plant-Root-Soil-Interactions-Modelling/CRootBox/tree/master/publication
https://github.com/Plant-Root-Soil-Interactions-Modelling/CRootBox/tree/master/publication
https://github.com/Plant-Root-Soil-Interactions-Modelling/CRootBox/tree/master/publication
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size of the root system with increasing r. Greater values of r lead to 
a larger and thus more widely spread root system, which results in 
a nonlinear increase of HMD. Again, the growth rate of Krs with 
greater values of r is lower than that of RL or RSA, which leads to 
a nonlinear decrease of Krs L and Krs A.

Similar to the insertion angle q, variations in the range of 
the random angle deflection s have no impact on measures defin-
ing the total size of a root system (RL, RSA, RV, and NR), on 
Vrhizo, or on root hydraulic architecture parameters (Krs, Krs L, 
and Krs A) but greatly influence the shape of a root system. This 
influence, however, is complex: greater values of s lead to both 
greater root tortuosity and a stronger impact of gravitropism. 

The way in which variations of s influence root system measures 
thus depends on the parameterization of the insertion angle q 
as well as on the number of trials N. For N > 0 (tropism type 
gravitropism) and q > 1, greater values of s increase the prob-
ability of vertical reorientation of a root segment and thus lead to 
higher values of zmax and zSUF and lower values of rmax. The mea-
sures conv and HMD, in contrast, first increase up to a certain 
threshold value with greater values of s and then decrease again. 
This is explained by the predominant influence of tortuosity for 
smaller values of s, which leads to a less dense root system. When 
s becomes larger, the influence of gravitropism outweighs tortu-
osity and the root system becomes denser. Ratios including conv 

Fig. 3. Contrasting probability density functions, shown as histogram (blue bars), kernel density estimation (KDE, blue line) and fitted parametric 
model, and Q-Q plots for root tip density at (a) a low number of axial roots (maxB) = 4.0 and (b) a high maxB = 40.0. The parametric model in this 
case is an inverse gamma distribution with parameters (a) shape 1-Ga  = 8.068, scale 1-Gb  = 0.01237, and location 1-Gq  = 0.0006525, and (b) 1-Ga  
= 71.16, 1-Gb  = 0.3982, and 1-Gq  = 0.0004433.
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(RND, RLD, RSAD, RVD, and VDrhizo) 
as a denominator first decrease to a certain 
threshold value for increasing values of s and 
then increase again.

Variations in the number of trials, N, 
also do not affect measures defining the 
total size of a root system (RL, RSA, RV, and 
NR), Vrhizo, or root hydraulic architecture 
parameters (Krs, Krs L, and Krs A) but greatly 
influence the shape of a root system. A larger 
N leads to a stronger gravitropic response and 
thus to higher zmax and zSUF and a lower rmax. 
The volume of the convex hull decreases lin-
early with increasing N. Ratios including a 
measure describing the total size of the root 
system as well as the volume of the convex hull 
(RND, RLD, RSAD, RVD, VDrhizo) increase 
linearly with increasing N. A larger number of 
trials leads to a denser root system and thus to 
a smaller HMD.

Researchers from both plant and soil 
communities agree that it is important to 
understand the interactions between roots 
and soil to better understand plant water 
and nutrient acquisition (Vetterlein et al., 
2018) and soil science (Gregory, 2006). 
Plant breeding increasingly focuses on roots 
(Bodner et al., 2015; Lynch, 2007). Wasson 
et al. (2012), for example, discussed root 
traits that help increase deep water uptake. 
They are directly related to the root hydrau-
lic architecture and are included in the set of 
our model input parameters: axial and radial 
resistance, maximal root length, and branch 
spacing. With our approach, it is now pos-
sible to quantify the effect of changing both 
the mean and the variance of those param-
eters on different root system measures. For 
example, a deeper root system is postulated 
as desirable for increased deep water uptake, 
and two strategies are discussed for achiev-
ing this goal: (i) an increased elongation rate 
of basal roots or (ii) a steeper insertion angle. 
Figure 4 shows that the mean depth of root 
water uptake ZSUF increases with increas-
ing insertion angle as well as with increasing 
elongation rate r. However, increasing r 
results in an increased root volume RV, while 
this parameter is not influenced by changing 
the insertion angle. Taking RV as a proxy 
for carbon costs, our approach thus is a tool 
to quantify increased costs associated with 
strategy (i).

Fig. 4. Dependence between root architecture measures (y axis) and model input parameters (x 
axis): direct or indirect and linear or nonlinear relationships, respectively, no correlation; regres-
sions with R2 > 0.9 are shown in red.
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Correlations between Different 
Root System Measures

We quantified correlations between all root system measures. 
An interesting finding was that some of the correlation coefficients 
varied across the parameter space. Each entry in the correlation 
matrix shown in Fig. 6a is again a matrix in which each line cor-
responds to one of the selected model input parameters and the 
different values that were chosen for each parameter. Each color 
in the small matrix thus corresponds to the basic model setup in 
which one parameter was changed according to the value out-
lined in the small matrix in Fig. 6b. We observe that all of the 
density measures (RND, RLD, RSAD, and RVD) have constant 
strong correlations between each other, irrespective of the chosen 
parameters. Root surface area density, RSAD, is for example always 
strongly correlated with the root length density, RLD. In a similar 
way, the rhizosphere volume is always strongly positive correlated 
with the root length, whereas there is a constant strongly negative 
correlation between the half mean distance between roots, HMD, 
and the densities such as the root length density. As anticipated, 
maximum horizontal spread and maximum rooting depth are neg-
atively correlated, although the strength of the correlation varies 
across the parameter space. Such changes in strength of correla-
tion can also be observed for the correlation between equivalent 

conductance of the root system, K, and the maximum horizontal 
spread, rmax.

Other root system measures show correlations that even 
change from slightly negative to slightly positive, as in the case 
of the correlation between the equivalent conductance of the 
root system per unit root length, Krs L, and the densities such 
as RLD, although the correlations are only weak. This makes 
sense as per the definition of Krs L, as it is dependent on the root 
length itself (RL) and not on the soil volume explored by this root 
system. Consequently, its (negative) correlation with the RL itself 
is stronger.

In the correlation between the volume of the convex hull, conv, 
and the maximal rooting depth, zmax, we also observe that there 
are a few parameterizations in which the correlation is positive. In 
the basic setup, the root system is parameterized such that it shows 
gravitropism. Hence, as long as the parameter s is large enough, the 
root system becomes steeper with time due to gravitropism. This is 
at the cost of the volume of the convex hull—the steeper the root 
system, the smaller the convex hull. Hence there is a negative cor-
relation between the maximum rooting depth and the volume of 
the convex hull. However, if s is small, then the root system does 
not show gravitropism, such that an increase in maximum rooting 
depth will also mean an increase in the volume of the convex hull 
and thus a positive correlation between conv and zmax.

Fig. 5. Three examples visualizing the dependence of root system mea-
sures on model input parameters: maximum rooting depth zmax as 
influenced by elongation rate r (top), root tip density RND (number 
of root tips per convex hull) as influenced by the number of primary 
roots maxB, where the volume of the convex hull is shown as purple 
shading and the root tips are indicated by red dots (middle), and maxi-
mum horizontal spread rmax as influenced by the range of the random 
angle deflection s (bottom), with the maximal horizontal spread of 
the root system indicated by the red circles.

Fig. 6. Correlations between the different root system measures and 
their variations across the parameter space: (a) the correlation matrix, 
where each entry is again a matrix in which each line corresponds to 
one of the selected model input parameters (see Tables 1 and 2), and 
(b) the small matrix where each color corresponds to the basic model 
setup in which one parameter was changed according to the value out-
lined in the small matrix (see Table 3).
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Figure 7a shows the nonlinear change in correlation between 
the maximum rooting depth and horizontal spread with a varying 
range of the random deflection angle s, which could be approxi-
mated with a quadratic polynomial with a minimum at s = 0.7. For 
increasing values of s below 0.7, the decrease rate in the maximum 
rooting depth is thus larger than the growth rate in the horizontal 
spread. For increasing values of s above 0.7, the decrease rate in 
the maximum rooting depth is then smaller than the growth rate 
in the horizontal spread. Figure 7b shows the nonlinear change in 
correlation between the maximum rooting depth and horizontal 
spread with a varying range of the insertion angle q; while the 
correlation is approximately constant for smaller values of q, it 
becomes more negative as q increases, meaning that the decrease 
rate in the maximum rooting depth is larger than the growth rate 
in the horizontal spread with increasing values of q.

From the point of view of ecology, our modeling and analysis 
approach provides a tool to predict which model input parameters 
(“root traits”) will or need to be tuned to achieve a given mea-
sure in a given environment (“root system trait”) and how the link 
between the two also depends on the parameter variance (see also 
Landl et al., 2018).

 6Conclusions
CRootBox is a mechanistic root architecture model with 

stochastic components. Using statistical methods, we analyzed 
characteristic root system measures of root systems simulated 
with CRootBox. We found that absolute root system measures 
have a normal probability distribution, while ratios of root system 
measures have an inverse g distribution. The general shapes 
of the regression curves that determine the effect of parameter 
variations on root system measures, as illustrated in Fig. 4, are 
expected to remain qualitatively similar for other parameteriza-
tions. Furthermore, we found that correlations between different 
root system measures are also variable across the parameter space.

In conclusion, our statistical analysis of the simulation out-
come of the 3D root architecture model CRootBox helped to 
understand the impact of model structure and model param-
eterization on characteristic root system measures. Other root 

architecture models use different approaches to describe pro-
cesses of root system development. The effect of these different 
approaches on simulated root system measures, however, has 
never been analyzed systematically. Our presented method can be 
applied to selected root traits (model input parameters) to achieve 
a certain outcome (root system measure). It can also be used to 
compare different root architecture models, including the effects 
of their stochasticity. And it can be used to compare probability 
distributions of root system measures obtained from simulations 
and experimental data (e.g., from 3D root images). Compared with 
experiments, model simulation can usually be repeated much more 
often; in this work, the number of replications for each parameter 
set was 1000. Thus, experimental data could be used to inform 
and parameterize root architecture models, which can then in 
turn be used to create realistic, data-driven scenarios for further 
investigations. The meta-models derived here are simple polyno-
mial regression models. In the future, this work shall be extended 
to more complex statistical methods including multivariate 
approaches such as copulas, which provide mathematical tools to 
build meta-models for vectors of (correlated) root system measures 
instead of doing this for each individual measure separately.

Supplemental Material
The complete statistical analysis is available as Supplemental 

Material S1: Complete Analysis.pdf (available at https://github.com/
Plant-Root-Soil-Interactions-Modelling/CRootBox/tree/master/publica-
tion%20archive/VZJ%202018). It is structured according to the different 
root system measures considered in this study. For each individual root 
system measure and input parametrization, a probability density func-
tion as well as kernel density estimation (purple line) are plotted. Fitted 
normal respectively inverse-gamma distributions are represented by a red 
line. The Q–Q plots show the goodness of fit of the estimated functions. 
Thereafter, regressions showing the dependency between variations of 
input parameters and root system measures are presented. Finally, cor-
relations are shown between root system measures and their dependency 
on variations of input parameters.
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Fig. 7. Correlation determined by ordinary least squares (OLS) fitting between rooting depth (rmax) and horizontal spread (zmax) as a function of the 
model input parameters (a) range of random deflection angle s and (b) insertion or branching angle q.
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