001     848381
005     20240712112820.0
024 7 _ |2 doi
|a 10.1016/j.mattod.2017.11.001
024 7 _ |2 ISSN
|a 1369-7021
024 7 _ |2 ISSN
|a 1873-4103
024 7 _ |a WOS:000430654600017
|2 WOS
024 7 _ |a altmetric:30060819
|2 altmetric
037 _ _ |a FZJ-2018-03622
041 _ _ |a English
082 _ _ |a 600
100 1 _ |0 P:(DE-HGF)0
|a Wandt, Johannes
|b 0
|e Corresponding author
245 _ _ |a Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1529501599_23413
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The ability of fast and safe charging is critical for the further success of lithium ion batteries in automotive applications. In state-of-the-art lithium ion batteries, the charging rate is limited by the onset of lithium plating on the graphite anode. Despite its high importance, so far no analytical technique has been available for directly measuring lithium plating during battery charge. Herein, we introduce operando electron paramagnetic resonance (EPR) spectroscopy as the first technique capable of time-resolved and quantitative detection of lithium metal plating in lithium ion batteries. In an exemplary study, the C-rate dependence of lithium metal plating during low-temperature charging at −20 °C is investigated. It is possible to quantify the amount of ‘dead lithium’ and observe the chemical reintercalation of plated lithium metal. In this way, it is possible to deconvolute the coulombic inefficiency of the lithium plating/stripping process and quantify the contributions of both dead lithium and active lithium loss due to solid electrolyte interphase (SEI) formation. The time-resolved and quantitative information accessible with operando EPR spectroscopy will be very useful for the optimization of fast charging procedures, testing of electrolyte additives, and model validation.
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)156296
|a Jakes, Peter
|b 1
700 1 _ |0 P:(DE-Juel1)162401
|a Granwehr, Josef
|b 2
|e Corresponding author
|u fzj
700 1 _ |0 P:(DE-Juel1)156123
|a Eichel, Rüdiger-A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Gasteiger, Hubert A.
|b 4
773 _ _ |0 PERI:(DE-600)2083513-9
|a 10.1016/j.mattod.2017.11.001
|g Vol. 21, no. 3, p. 231 - 240
|n 3
|p 231 - 240
|t Materials today
|v 21
|x 1369-7021
|y 2018
856 4 _ |u https://juser.fz-juelich.de/record/848381/files/1-s2.0-S1369702117306752-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848381/files/1-s2.0-S1369702117306752-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848381/files/1-s2.0-S1369702117306752-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848381/files/1-s2.0-S1369702117306752-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/848381/files/1-s2.0-S1369702117306752-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:848381
|p VDB
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 0
|k TUM
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156296
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162401
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)162401
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156123
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)156123
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 4
|k TUM
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MATER TODAY : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
|b MATER TODAY : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21