000848383 001__ 848383
000848383 005__ 20240712112820.0
000848383 0247_ $$2doi$$a10.1016/j.electacta.2018.04.176
000848383 0247_ $$2ISSN$$a0013-4686
000848383 0247_ $$2ISSN$$a1873-3859
000848383 0247_ $$2WOS$$aWOS:000433042500043
000848383 037__ $$aFZJ-2018-03624
000848383 041__ $$aEnglish
000848383 082__ $$a540
000848383 1001_ $$0P:(DE-Juel1)161361$$aAslanbas, Özgür$$b0
000848383 245__ $$aElectrochemical analysis and mixed potentials theory of ionic liquid based Metal–Air batteries with Al/Si alloy anodes
000848383 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000848383 3367_ $$2DRIVER$$aarticle
000848383 3367_ $$2DataCite$$aOutput Types/Journal article
000848383 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1529502255_23848
000848383 3367_ $$2BibTeX$$aARTICLE
000848383 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848383 3367_ $$00$$2EndNote$$aJournal Article
000848383 520__ $$aAluminium and silicon, when coupled with an air cathode in an electrochemical cell may provide theoretical specific energies of up to 8146 mWh/g and 8470 mWh/g. Proof of concept for the discharge in cells with ionic liquid EMIm(HF)2.3F electrolyte had been established in 2009 for silicon and in 2015 for aluminium. The objective of the present work is the investigation of discharge behavior and corrosion in this type of cell using binary Al/Si alloys as anodes. Al/Si alloys with nine different compositions were prepared by an arc melting process and shaped to anodes. Microstructure of the anodes in the initial state was evaluated with respect to the fractions of its constituents. Al/Si–air primary full cells were investigated with respect to voltages during OCV and discharge during intermediate term (20 h) runs under current densities of 250 μA/cm2. Voltages decrease with Si-content in the alloys following trends with quantitatively different characteristics for the hypoeutectic, intermediate hypereutectic and the alloys with high Si content. SEM analysis of surface morphology of the anodes after discharge experiments indicates that for all alloys the discharge capacity results mostly from the oxidation of the aluminium. Potentiodynamic polarization measurements were conducted in order to determine corrosion potentials for the alloys and analyzed with approaches based on mixed potential theory including galvanic coupling. The results are discussed in terms of Evans diagrams; thereby approaches based on alternative scenarios for the galvanic coupling are examined.
000848383 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000848383 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000848383 588__ $$aDataset connected to CrossRef
000848383 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b1$$eCorresponding author
000848383 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
000848383 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b3
000848383 7001_ $$0P:(DE-HGF)0$$aEin-Eli, Yair$$b4
000848383 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5
000848383 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b6
000848383 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2018.04.176$$gVol. 276, p. 399 - 411$$p399 - 411$$tElectrochimica acta$$v276$$x0013-4686$$y2018
000848383 8564_ $$uhttps://juser.fz-juelich.de/record/848383/files/1-s2.0-S0013468618309459-main.pdf$$yRestricted
000848383 8564_ $$uhttps://juser.fz-juelich.de/record/848383/files/1-s2.0-S0013468618309459-main.gif?subformat=icon$$xicon$$yRestricted
000848383 8564_ $$uhttps://juser.fz-juelich.de/record/848383/files/1-s2.0-S0013468618309459-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000848383 8564_ $$uhttps://juser.fz-juelich.de/record/848383/files/1-s2.0-S0013468618309459-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000848383 8564_ $$uhttps://juser.fz-juelich.de/record/848383/files/1-s2.0-S0013468618309459-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000848383 909CO $$ooai:juser.fz-juelich.de:848383$$pVDB
000848383 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161361$$aIEK-9 $$b0
000848383 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)161361$$aRWTH Aachen$$b0$$kRWTH
000848383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b1$$kFZJ
000848383 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162243$$aRWTH Aachen$$b1$$kRWTH
000848383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
000848383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b3$$kFZJ
000848383 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)167581$$a RWTH: RWTH Aachen, IPC$$b3
000848383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aTechnion-Israel Institute of Technology $$b4
000848383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000848383 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156123$$a RWTH: RWTH Aachen, IPC$$b5
000848383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b6$$kFZJ
000848383 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000848383 9141_ $$y2018
000848383 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000848383 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000848383 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848383 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848383 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848383 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000848383 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000848383 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848383 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848383 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848383 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848383 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848383 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848383 920__ $$lyes
000848383 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000848383 980__ $$ajournal
000848383 980__ $$aVDB
000848383 980__ $$aI:(DE-Juel1)IEK-9-20110218
000848383 980__ $$aUNRESTRICTED
000848383 981__ $$aI:(DE-Juel1)IET-1-20110218